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Sommario

La sintesi vocale partendo da un testo scritto e un concetto affascinante nel-
I’ambito dell’elaborazione del linguaggio naturale. Per quanto sia simile alla
sua controparte (riconoscimento vocale automatico), il passaggio da testo
a voce risulta essere un processo piu delicato. Rispetto al testo scritto, il
linguaggio parlato trasmette uno spettro molto pitt ampio di informazioni,
quali frequenza, volume, velocita, e pause. Nonostante a oggi la sintesi vocale
abbia raggiunto un livello di intellegibilita molto alto, continua a presentare
dei limiti, principalmente per quanto riguarda la mancanza di credibilita ed
espressivita. Cio vale in particolar modo per le lingue diverse dall’inglese, in
cui la raccolta di dati e gia di per sé una sfida. Il presente lavoro mira ad
affrontare il passaggio da testo a voce in italiano, sfruttando fonemizzazione
e modelli neurali cosi da ottenere una migliore espressivita nella clonazione
vocale. Dopo aver addestrato i modelli, gli audio ottenuti vengono confron-
tati, attraverso la somministrazione di un questionario, con quelli forniti da
altri servizi di sintesi vocale. La voce da noi sintetizzata si posiziona ai li-
velli piu alti in tutte le caratteristiche testate: 1’espressivita e il punteggio
globale medio presentano gli scarti maggiori rispetto alle altre voci. Svilup-
pi futuri potrebbero prevedere il miglioramento di alcuni degli aspetti meno
premiati dai questionari, in particolare la naturalezza delle pause, cosi come

la possibilita di clonare nuove voci utilizzando una quantita ridotta di dati.



Abstract

The synthesis of spoken words from a written text is a fascinating concept
in natural language processing. Despite being similar to its counterpart (au-
tomatic speech recognition), text-to-speech tends to be a more subtle task.
Compared to written text, spoken language conveys a much broader spec-
trum of information, such as pitch, volume, speed, and pauses. Even though
synthetic speech has by now reached a very high level of intelligibility, it has
some shortcomings, mainly the lack of believability and expressivity. This
holds especially in languages other than English, where data gathering is a
hard challenge by itself. The present work aims at tackling the text-to-speech
task in Italian, leveraging phonemization and neural models to achieve bet-
ter expressivity in voice cloning. After training the models, the obtained
audios are compared, through the administration of a questionnaire, with
the ones provided by other available synthetic speech services. The voice we
synthesized leads the rankings in all the tested characteristics: expressivity
and global mean opinion score show the widest difference compared to the
other voices. Future developments might include working on some of the
less successful questionnaire scores, particularly pause naturalness, as well as
investigating the possibility of cloning new voices using a smaller amount of
data.
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Foreword

The ability to synthesize spoken words from a text is a fascinating topic.
Despite being seemingly similar to its reverse task (automatic speech recog-
nition), text-to-speech is much more nuanced. Speaking is the way by which
language first developed, with writing coming much later as an imperfect
method to record what has been uttered. While speaking, a person conveys
a huge amount of information that can not be easily embedded in our writ-
ing systems. Pitch, volume, speed, pauses: all these factors contribute to the
meaning conveyance and they are almost completely lost when an oral text is
transcribed. Especially for narration and poetry, the spoken word has always
held an appeal unrivalled by the printed page: books can surely have their
charm, but a good actor reciting a Shakespeare sonnet is a wholly different
experience.

As of today, especially for the Italian language, text-to-speech models are
still not as believable as a human reader. Sure, they can now produce all
spoken sounds correctly, but they lack personality and expressivity. While
this might not be a problem for some very cold and technical contexts, when
reading a narrative passage current solutions (especially for Italian) show
all their shortcomings. This is a pity, as a natural-sounding synthetic voice
could be an excellent resource, in particular for the visually impaired, for
whom reading a book now requires the time and patience of a close person
or resorting to an audiobook. The ability to clone the voice of a given person
might also have other applications, such as aiding journalists to provide an
audio version of an article using their own voice or helping mute people to
communicate more satisfactorily.

The current thesis aims to employ deep neural networks to convert Italian

xiii



xiv FOREWORD

written texts to audio, with special attention to voice expressivity. A single
speaker is chosen for the task to exemplify the voice cloning capabilities of
the pipeline. To achieve better results, a phonemizer will be created as well,
focusing especially on the positioning of stresses, the hardest part of the

otherwise phonetic Italian reading conventions.



Part 1

BACKGROUND






Chapter 1

Text-to-speech

1.1 The text-to-speech problem

Text-to-speech (TTS) [1] is a process that creates audio representing speech,
starting from written text input. If both written and spoken languages are
considered signals, then TTS is the process of taking one type of signal (writ-
ten) and converting it into another type (spoken). There are various issues
to be discussed regarding speech synthesis, such as “does the written sig-
nal contain enough information to generate the spoken one?”, “what are the
relationships between author, reader, and listener?”, and most importantly

“what do listener expect from a synthetic voice?”.

1.1.1 Speech and writing

The first thing to be noted about the relationship between speech and writing
is that human language first developed in its spoken form. This is impor-
tant since written texts are (in most languagesﬂ) a representation of spo-
ken sounds: in other words, written text is a form of encoding of the audi-

tive signal. In turn, spoken communication is a form of encoding meanings.

'Even though some writing systems (e.g., Chinese characters) do not have a direct con-
nection to spoken texts, the focus of this work is on Italian TTS, therefore this simplification
holds. Anyway, it should be noted that despite lacking a direct phonetical encoding even
logograms are readable aloud: they are of course less direct phonetical encodings, but pho-
netical encodings nonetheless.
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Therefore, when writing something, meaning is first encoded as spoken words
(which are not necessarily pronounced aloud), which are then encoded as a
written text. This written text is then decoded to an auditive signal by the

reader, and this signal is finally decoded to its meaning by the listener.

Keeping track of this double encoding and decoding process is crucial
since audio produced by a TTS system must not only convey a sufficiently
good representation of the written text but also of its meaning. This means
that the single sounds themselves, although necessary, are not sufficient to
create a robust synthetic speech: convincing prosody is just as important as

correct graphemes-to-sounds decoding.

Here arises one of the main difficulties of TTS: the encoding of spoken to
written language is somewhat impoverished, as prosodic aspects are almost
completely ignored. One of the hypotheses on why prosody is not encoded
in usual written transcriptions is that being it a continuous aspect it would
be hard to express it with discrete symbols (a “happy” intonation is not an
on/off switch, but rather a spectrum of intensities). Another explanation
could be that, while important for emotive (and therefore literary) texts,
prosody is not relevant for legal and commercial documents, which are the

uses for which written language has been initially developed [2].

There are however some ways to convey limited prosodic information.
The first one is of course punctuation, used to give structure to what would
otherwise be a list of juxtaposed words. It is also possible to emphasize some
words or phrases by using italicized, bold, or underlined text. Changing
formatting, font faces, and ... can have similar usages as well. What is completely

lacking from basically all conventional written texts is affective prosodyﬂ.

2This may be changing in the recent years with the widespread usage of electronic means
of communication: in instant messaging, emojis, stickers, and GIFs have become common
and are expressing a broader spectrum of emotive nuances than plain text. These solutions,
in addition to being specific to their media, are almost impossible to express orally: albeit
very interesting on the linguistic level, it will thus be necessary to ignore them in the current
work.
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Figure 1.1: Basic model of reading aloud, which shows in the information
flow between the author, the reader, and the listener.
Source: adapted from [1].

1.1.2 Reading aloud

When reading aloud, as opposed to silently, the process of encoding and
decoding becomes more complex, especially because of the prosodic impov-
erishment just discussed. In this situation, there are three actors: the author,
the reader, and the listener. The author and the listeners behave intuitively:
the author generates the message and (double) encodes it to a written signal,
while the listener decodes the spoken signals and extracts the meaning from

the message.

One could then expect that the reader merely decodes the written signal
to a spoken one, but this is not all that happens: actually, the reader has
to both decode the written signal and encode the spoken one. This extra
step is necessary precisely because of the prosodic impoverishment: when
the written text is first encoded some information is lost and it needs to be
reconstructed by the reader to generate a naturally sounding spoken signal.
It then becomes clear why convincing TTS is so challenging: the synthetic
speaker does not only have to provide accurate phoneme pronunciation, but
it also needs to infer and add prosodic details to restore (as much as possi-
ble) the originally encoded information. A schematization of the described
process can be found in fig. [I.1]
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1.1.3 Key problems in text-to-speech

When building a TTS system, four key problems have been identified [1].

The first issue regards the use of encoding systems other than natural lan-
guage: classic examples are numbers, dates and times, units of measurement,
and currencies. The most common method to deal with these instances con-
sists in applying text normalization: simply put, a normalizer tries to rewrite
any non-standard text as proper linguistic text. For example, in Italian “28”

will be rewritten as “ventotto” and “km” will be transformed to “chilometri”.

The second problem is ambiguity. One form of ambiguity is represented
by homographs, i.e. words that are written in the same way but pronounced
differently according to the context: in Italian examples of homographs are
“leggere” and “leggére”; “presidi” and “presidi”, or “principi” and “principi’ﬂ.
Another form of ambiguity is syntactic ambiguity: an Italian example is “ci
scusiamo dei possibili fastidi causati porgendo cordiali saluti”, where it may
be interpreted as both “ci scusiamo dei possibili fastidi causati [porgendo cor-
diali saluti]” or as “ci scusiamo dei possibili fastidi [causati porgendo cordiali
saluti]”. Both homographs and syntactic ambiguity influence pronunciation

and prosody and often create problems when dealing with TTS.

The third issue is naturalness. As already discussed, a lack of proper
prosody might induce in the listener a sense of artificiality, which may be
distracting and annoying. Fixing this problem is very hard since a complete
semantic understanding of both the content and the context would be needed.
Some systems try to infer prosodic information but the issue is still one of

the main limitations of believable TTS.

The last problem is intelligibility. There is not as much to talk about
here: this aspect is simpler to measure and modern TTS models are almost
perfect in terms of intelligibility, so this is at this point more of a prerequisite

than an actual issue.

3In Ttalian stresses are omitted, except when they fall on the last vowel of the word: here
they are reported just to illustrate the aforementioned differences.
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1.2 Classical models

When creating a computer model that deals with TTS tasks, multiple ap-
proaches are feasible [3]. They can be roughly divided into classical models

and modern neural-network-based solutions.

Articulatory synthesis

Articulatory synthesis [4], [5] is ideally the most effective method of speech
synthesis, as it simulates the behavior of human articulators (lips, tongue,
glottis, and moving vocal tract). It is however hard to put these models
into practice, especially because of the difficulty to collect the required data.
Thus, systems using this method tend to perform poorly compared to more

abstract models.

Formant synthesis

Formant synthesis |6]-[8] is based on a set of rules to control a source-filter
model, usually following the formant structure and other spectral properties
of speech. The speech is created by using an additive synthesis module and
an acoustic model, with the possibility to tune some parameters such as
frequency, voicing, or noise. The speech created is usually highly intelligible
and requires moderate computational resources: therefore, these methods are
well-suited for embedded systems. The main drawback of formant synthesis

is that the output is unnatural and contains artifacts.

Concatenative synthesis

Concatenative synthesis [9]-[13] works by concatenating pre-stored pieces
of speech. The database usually consists of voice actors’ recordings, ranging
from whole sentences to single syllables. While this method usually produces
very convincing results, it requires a huge database and the voice often lacks

emotions, as the recordings need to be adaptable to any context.
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Statistical parametric synthesis

Statistical parametric synthesis [14]-[18] is based on the idea of first gener-
ating the acoustic parameters that are needed to produce speech and then
recovering speech from these parameters by using some algorithms. There are
usually three main components in a statistical parametric synthesis model:
a text analysis module, a parameter prediction module, and a vocoder. The
text analysis module performs some pre-processing, such as text normaliza-
tion, grapheme-to-phoneme conversion, and word segmentation, before ex-
tracting some linguistic features. The acoustic module extracts the acoustic
features from the linguistic ones, while the vocoder synthesizes speech from
the acoustic features. This method gives more a natural speech, it is flexible
and it does not require a large amount of data. On the other hand, the
generated speech can be less intelligible due to artifacts and the generated

voice can be easily detected as synthetic.

1.3 Neural models

In the 2010s, some works started to introduce neural networks into statistical
parametric synthesis models, using both deep neural networks [19], [20] and
recurrent neural networks [21], [22]. However, these approaches still use
linguistic features: a more modern approach [23] consists in using graphemes
or phonemes as inputs and performing an end-to-end generation of acoustic

features.

Main taxonomy

There are four main categories into which neural network models for TTS can

fall:

1. Text analysis models, which converts characters into phonemes or lin-

guistic features;

2. Acoustic models, which generate acoustic features starting from lin-

guistic features or characters/phonemes;
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3. Vocoders, which generate waveforms from linguistic or acoustic fea-

tures;

4. End-to-end models, which convert characters/phonemes into waveforms.

Following this classification, there are different paths data can follow to

go from text to speech:

Characters — linguistic features — acoustic features — waveform;

Characters — phonemes — acoustic features — waveform;

Characters — linguistic features — waveform;

Characters — phonemes — waveform;

Characters — acoustic features — waveform,;

Characters — waveform.

1.3.1 Text analysis

Text analysis, also known in the TTS field as frontend, transforms the input
characters into linguistic features or phonemes. Compared to parametric
synthesis, where linguistic features are much more important for the final
result, text analysis in neural models is greatly simplified. Many tasks can

be carried out as part of text analysis, as discussed in the following sections.

Text normalization

As already mentioned in section not all text is made up of characters
corresponding directly to spoken words. Earlier text normalizers solved this
issue with a rule-based pipeline, with later ones leveraging neural networks to
work with a sequence-to-sequence approach. There are also some more recent

works [24] proposing to combine both methods to improve performances.
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Word segmentation

This step is essential when dealing with character-based languages, such as
Chinese or Japanese: in these writing systems, word boundaries are not

marked by spaces and thus need to be detected to facilitate later steps.

Part of speech tagging

Part of speech (POS) tagging consists in the identification of the POS cor-
responding to each word, such as noun, verb, adjective, and other classes
common to most languages, as well as more specific ones, such as nominal

classifiers for many Asian idioms.

Prosody prediction

As already discussed, prosody plays a big role in oral communication: thus,
some approaches have been devised to address the task of predicting prosodic
information. These methods vary from language to language, but in general,
attention is put on tagging intonation and pauses, such as with the ToBI

(tones and break indices) system for English [25].

Grapheme-to-phoneme conversion

Grapheme-to-phoneme conversion, or phonemization, is a very effective way
to facilitate speech synthesis and consists in turning graphemes into phonemes.
The approach is very different for alphabetic and character-based writing
systems: for alphabetic languages, the main challenge is that a lexicon can
not cover all possible word inflections, therefore a method to predict the
phonemization of new word forms must be used; on the other hand, for
character-based idioms, even though the lexicon is limited there are many
polyphonesﬂ therefore a way to infer the proper meaning depending on the

context is necessary.

4Words with the same writing but different pronunciation.
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1.3.2 Acoustic models

While in classical TTS the most common model for this step consists in a hid-
den Markov model [14], [15], in neural implementations different approaches
are used, such as recurrent neural networks (RNN), convolutional neural net-
works (CNN), and transformer-based models. Compared to their classical
counterparts, neural-based models present several advantages: linguistic-
acoustic alignment must not be provided as the models implicitly learn
it; linguistic features are simplified into only characters of phoneme se-
quences; acoustic features change from low-dimensional Cepstrumsﬂ to high-

dimensional mel (or even linear) spectrograms.

RNN-based models

The most popular RNN-based models are the ones from the Tacotron series.
The original architecture [26] utilizes an encoder-attention-decoder frame-
work, outputting linear spectrograms starting from an input of characters.
The Griffin-Lim algorithm [27] is also leveraged to generate waveforms. Sub-
sequent variations such as Tacotron 2 [28] produce mel spectrograms instead

and use the WaveNet model [29] to convert them into waveforms.

CNN-based models

Examples of CNN-based models are the architectures from the Deep Voice
family. Deep Voice [30] first obtains linguistic features through the convolu-
tional neural network and then converts them to waveforms using WaveNet
[29]. Deep Voice 2 [31] improves the network structures and multi-speaker
modeling. Deep Voice 3 [32] uses a fully convolutional network for speech syn-
thesis, with a compact sequence-to-sequence model, and predicts mel spec-

trograms directly.

®A cepstrum is a result of computing the inverse Fourier transform of the logarithm of
an estimated signal spectrum.
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Transformer-based models

The first transformer-based TTS model (TransformerTTs [33]) was developed
while trying to solve two issues of the RNN architectures: first, because of the
nature of recurrency itself, the encoder and the decoder can not be trained in
parallel; second, the text and speech sequences tend to be quite long, which
is not ideal for RNNs. The main drawback in using transformers is that,
despite achieving a similar quality as Tacotron 2 with less training time,
parallel training makes the encoder-decoder attentions not robust. To solve
this problem, alternative architectures have been proposed [34], [35].

A further evolution is represented by FastSpeech [36]: this model uses a
feed-forward transformer network to generate mel spectrograms in parallel,
removing the attention mechanism between text and speech to improve ro-
bustness. FastPitch [37] improves FastSpeech by using pitch information as

additional decoder inputs.

1.3.3 Vocoders

Early neural vocoders [38]-[40] directly took linguistic features as inputs,
skipping the explicit acoustic features extraction step. However, later models
[41], [42] started to work with mel-spectrograms. Four main categories of
vocoder models can be discerned: autoregressive, flow-based, GAN-based,

and diffusion-based.

Autoregressive vocoders

WaveNet [38] was the first neural vocoder. It uses dilated convolutions to
generate waveforms autoregressively. Contrary to previous statistical meth-
ods, almost no prior knowledge of audio signals is needed, resulting in an
end-to-end learning approach. While the original model uses linguistic fea-
tures as inputs, it can be adapted to process linear and mel spectrograms as
well. The main drawback of WaveNet is the slow inference speed: for this
reason, some improvements in terms of weight and speed have been proposed,
such as SampleRNN [43], Char2Wav [44], and WaveRNN [45].
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Flow-based vocoders

Flow-based vocoders work on the idea that normalizing flow is a kind of
generative model, as it transforms a probability density with a sequence of
invertible mappings [46]. Data are generated from a standard probability
distribution during sampling, using the inverse of the transforms. Flow-
based vocoders can be further divided into two subcategories: autoregressive
[39] and bipartite transforms [41], [42]. Autoregressive methods are usually
more expressive, but require teacher distillation during training; bipartite ap-
proaches have a simpler training pipeline but tend to require a larger amount

of parameters to achieve comparable performances.

G AN-based vocoders

Generative adversarial networks (GANs) are one of the most utilized methods
for generative tasks. They consist of a generator, which generates data, and a
discriminator, which judges the authenticity of data from the generator. For
the generator, most vocoders leverage dilated convolutions to increase the
receptive field and transposed convolutions for upsampling. Regarding the
discriminator, more varied approaches are used: random window [47], multi-

scale [48], multi-period [49], and hierarchical [50] are all common methods.

Diffusion-based vocoders

The basic idea of diffusion-based vocoders |51] is to generate mappings be-
tween data and latent distributions with a diffusion process and an inverse
process. During diffusion, the waveform data sample is gradually added with
some random noises until it becomes Gaussian noise. In the reverse process,
denoising is applied to the Gaussian noise to obtain waveform data samples.
Despite generating very high voice quality, these approaches suffer from slow

inference speed.
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Chapter 2

Phonemes

2.1 Phonemes and the IPA Alphabet

In most languages, graphemes (the glyphs of the written language) do not
directly traduce in phones (i.e. the sounds produced by the speakers). To
transcribe phones more precisely, phonemes are used instead of graphemes.
The most widespread way to transcribe sounds is the International Pho-
netic Alphabet [52], maintained by the International Phonetic Association
(Ipa) [53]. The IpA, established in 1886 in Paris, is the oldest organization
for phoneticians. The first version of the IPA Alphabet was first published in
1888 and underwent many changes, with the most recent revision dated 2020
(fig. . It consists of two families of symbols: letters and other symbols.

2.1.1 Consonants

In general, consonants are sounds articulated with a complete or partial
closure of the vocal tract. They can in turn be divided into pulmonic and
non-pulmonic consonants.

Pulmonic consonants are the most common ones, especially in Furopean
languages, and are articulated by using the glottis or the oral cavity together
with the lungs. They can also be further categorized according to two addi-

tional criteria: manner and place of articulation.

15
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THE INTERNATIONAL PHONETIC ALPHABET (revised to 2020)

CONSONANTS (PULMONIC) ®®®2020 IPA
Bilabial |Labiodental| Dental ‘Alveolar‘Postalveolar Retroflex | Palatal | Velar | Uvular | Pharyngeal | Glottal

Posse | P b td tdlcsflkglqae| | |?]

Nasal m ) n n n 1) N

Trill B r R

Tap or Flap \'A r T

reave |G B f v][0d][sz|[ 3]sz/¢ilxylxs h S hAh

Fioete i1k

Approximant v 1 1 J u

Etimant 1 1 A L

M Voiceless labial-velar fricative

W Voiced labial-velar approximant

CONSONANTS (NON-PULMONIC) VOWELS
Clicks Voiced implosives Ejectives
Close
O Bilabial B Bitabial Examples:
| ental d pentatatveotar | P’ Biabial
| ’ Close-mid
| (Posalveolar :f Palatal t’ Dental/alveolar
F patatoatveolar d veiar K’ velar
y o
” Alveolar lateral G Uvular S Alveolar fricative Open-mid
OTHER SYMBOLS
Open

C Z Alveolo-palatal fricatives

f

I Voiced alveolar lateral flap

Iand X

1 Voiced labial-palatal
H Voiceless epiglottal fricative

§ Voiced epiglottal ficative

—_—

ts kp

Affricates and double articulations
can be represented by two symbols

Front

ey

Symbols to the right in a cell are voiced, to the left are voiceless. Shaded areas denote articulations judged impossible.

(;entral Back
et Weu
1Y (6]
Ce)——9¢0—— Y0
e
e (E*S\\GiA o)
x 15
a OEA—CI D

Where symbols appear in pairs, the one
to the right represents a rounded vowel.

SUPRASEGMENTALS
1 ope
Primary stress |
[founa'tifon

Secondary stress

joined by a tie bar if necessary.
-1-) Epiglottal plosive I Long [N
" Half-long c’
o M
DIACRITICS Extra-short c
Voiceless nd Breathy voiced D @ Dental t d )
o o & . e 1y n 5R | Minor (foot) group
v Voiced § \t, ., Creaky voiced b a' ., Apical E (\_:,1 ” Major (intonation) group
h Aspirated th dh . Linguolabial E d o Laminal E (nj . Syllable break 1i.eekt
W o W AW~ N a -
| Morcrounded Q) Labialized tv d Nasalized 8 _ Linking (absence of a break)
Less rounded J Palatalized Jdi | ™ Nasal release n
. Less rounde :{) alatalize t d asal release d TONES AND WORD ACCENTS
Advanced u Y Velarized tY dY| ! Lateral release d! LEVEL CONTOUR
. ch
. & Ext « -
_ Retracted e § Pharyngealized  £9 (S No audible release (]| € o T € o A Rising
< ~
" Centralized é ~ Velarized or pharyngeslized T € min €\ Faiting
= e High
x € - M e 1.8
Mid-centralized & Raised € (] = voiced alveolar fricative) N N rising
n * e ~ & - Low € A rising
Syllabic Lowered (B = voiced bilabial approximant) < Exra = Rising-
L L LA € Jiw e A raumé
. Non-syllabic € , Advanced Tongue Root - € 4 Downstep 2 Global rise
“ Rhoticity o av Retracted Tongue Root € T Upstep N\ Global fall
:

5
Some diacrities may be placed above a symbol with a descender, e.g. T}

Figure 2.1: The International Phonetic Alphabet.

Source:
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Non-pulmonic consonants, on the other hand, do not depend on the air-

flow coming from the lungs. They include ejectives, clicks, and implosives.

2.1.2 Vowels

Vowels are sounds occurring in the center of a syllable and are classified
according to the position of the tongue. In particular, tongue vertical (height)

and horizontal (backness) positions are taken into consideration.

2.1.3 Other symbols

The IPA Alphabet also makes use of other symbols to convey phonetic details.
These characters include diacritics (which specify articulatory details of given
letters), pitch and tone symbols, and suprasegmentals. Suprasegmentals are
particularly useful for Italian phonemization, as they provide information

about the stress position as well as the duration of phonemes.

2.2 Italian phonemes

Of course, in Italian not all of the IPA symbols find usage. The used phonemes
are shown in tables 2.1 and 2.2

2.2.1 Consonants

Regarding the consonants, the phones associated with most of them are quite

intuitive, as they correspond to how the letters are pronounced in standard

written Italian. In particular, /m/, /n/, /p/, /b/, /t/, /d/, [T/, /v/, /1],
and /r/ do not need any clarification. Some others are less clear:

» /k/and /g/ are always pronounced dure, such as in “cane” and “gatto”;

o /tf/ and /&/ are the dolce versions of “c” and “g”, such as in “cena”

and “gelato”;
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Labial Dental  Post-alveolar Velar
alveoalr palatal

Nasal m n n
Stop pb td kg
Affricative ts dz f &
Fricative fv Sz |
Approximant j w
Lateral 1 £
Trill r

Table 2.1: Italian consonant phonemes.

« /s/ and /z/ both correspond to the “s” grapheme, but /s/ is voice-
less (sorda, such as in “sano”) while /z/ is voiced (sonora, such as in

“causa”);

o /ts/ and /dz/ both correspond to the “z” grapheme, but /ts/ is voiceless
(sorda, such as in “azione”) while /dz/ is voiced (sonora, such as in

“zaino”);
« /n/ represents the “gn” sound such as in “gnomo”;
o /[/ represents the “sc” sound such as in “sciare”;
o /&/ represents the “gl” sound such as in “aglio”;

« /j/ and /w/ represent semivowels or semiconsonants, such as in “ieri”

and “uovo”.

2.2.2 Vowels

Vowels are even simpler than consonants, with just a caveat: while /i/, /u/,
and /a/ are the same as their written counterparts, “e” and “o” present two
versions. /e/ and /o/ correspond to the closed versions of the relative letters,
such as in “vero” and “ombra”, while /e/ and /o/ correspond to the open

versions, such as in “etto” and “notte”.
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‘Front Central Back

Close i u
Close-mid e 0
Open-mid € 6
Open a

Table 2.2: Italian vowel phonemes.

2.2.3 Other symbols

In addition to consonants and vowels, two other symbols are commonly used.
The first one is the primary stress (/'/), written before the stressed syllable.
The other one is the length mark (/:/), written after a consonant whose

length must be doubled (doppia).
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Chapter 3
Datasets

The experimental work can be roughly divided into three parts: the first one
is the creation of a phonemizer for the Italian language, the second one deals
with the training of the text-to-speech model, and the third one consists of

data gathering regarding the human evaluation of the model.

3.1 Phonemization

To properly train a phonemizer, a dataset containing Italian words and their
phonemic transcription must be exploited. Since this kind of dataset is not

present online, it needs to be created manually.

3.1.1 Words gathering

The first step consists in gathering the Italian words. One approach would
be, for example, to get the words from a dictionary or some lists containing
the most frequently used terms. This would, however, create an issue: in
Italian most parts of speech present inflections, and it is important to train
the phonemizer on the inflected words as well. The conjugation of verbs is
especially complex in Italian, with some lemmas completely changing their
form and stress position for different tenses.

A more realistic sample of inflected words needs to be chosen: the whole

body of Wikipedia’s Italian featured articles |55 is used, which as of today

23
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consists of a total of 539 voices. Starting from this list, all articles are parsed

and the words they contain are stored.

3.1.2 Phonemization

When trying to phonemically transcribe the gathered words, two main issues
arise. The first one is that not all phonemic transcription sources include
stresses, which are crucial for training the phonemizer, while the second one
is that virtually no phonemization of inflected terms is available.

Both these problems are solved by using the WordReference.com Italian
to English dictionary [56]: in addition to the inclusion of stresses, when an
inflected term is looked for the dictionary returns the main lemma, which
in turn contains the phonemic transcription. Unfortunately, phonemic tran-
scription of inflected words is rarely provided, so some processing is needed.

The processing pipeline is quite complex, but its main idea is to obtain
the phonemized lemma corresponding to each word and then to adapt the
phonemic transcription to the inflected term. This is achieved by exploiting
the fact that in Italian most verbs, nouns, and adjectives have almost stan-
dard desinences, so the final parts of words can usually be deterministically
phonemized.

The last thing that must be done is to deal with the stress position since in
some verbal tenses it tends to move from its original location: this is obtained

by using a dedicated function. The algorithm first checks for inflected verbs

4 ¢

ending in “-iamo”, “-iate”, “-iono”, or “-iano” and moves the stress right

before the desinence. For example “cuocere” is phonemized as /kwotfere/,
but its inflected form “cuociamo” is pronounced with the stress moved to the

next syllable: /kwo'tfamo/. The same is done with other desinences, such

RRENA4 %« W

as “-ssimo”, “-ate”, “-ete”, “-ite”. On the other hand, some forms make the

MW ” W

stress move backward, such as “-ano”, “-ono”, “-ino”, or “-ero”: “vedere” is

phonemized as /ve'dere/, but “vedono” becomes /'vedono/. The same is done

¢ ” W %W

with forms ending in “-a”, “-e”, “-i”, or *

4

-0”. Of course, these deterministic
rules do not cover all exceptions of the Italian language, but when dealing

with a large amount of data a margin of error is always unavoidable.
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3.1.3 Dataset analysis

The final dataset is then split into training, validation, and test sets. Firstly,
the dataset is split in 25 % for test and 75% for training and validation.
Then, the latter is split again in 75 % for training and 25 % for validation.
The final proportions are 56.25% for training, 18.75% for validation and
25 % for test.

The training set consists of 18173 pairs, each containing a word and
its phonemized pronunciation. For the graphemic transcription, the mean
length is 8.57 with a standard deviation of 2.46, the minimum length is 1,
while the maximum is 20. For the phonemic transcription, the mean length
is 9.75 with a standard deviation of 2.64, the minimum length is 2, while the

maximum is 23.

The validation set consists of 6058 pairs, each containing a word and
its phonemized pronunciation. For the graphemic transcription, the mean
length is 8.59 with a standard deviation of 2.46, the minimum length is 2,
while the maximum is 19. For the phonemic transcription, the mean length
is 9.79 with a standard deviation of 2.65, the minimum length is 2, while the

maximum is 21.

The test set consists of 8078 pairs, each containing a word and its phone-
mized pronunciation. For the graphemic transcription, the mean length is
8.58 with a standard deviation of 2.44, the minimum length is 1, while the
maximum is 20. For the phonemic transcription, the mean length is 9.77 with
a standard deviation of 2.61, the minimum length is 2, while the maximum
is 23.

The higher length encountered in the phonemized data is to be expected,
since stresses are added and some graphemes are rendered with multiple

phonemes. The length statistics and distributions can be found in tables|3.1

and [3.2] and figs. and
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Training Validation

Test

Mean

Standard deviation
Minimum

25 %

50 %

75 %

Maximum

8.57
2.46

1
7
8
10
20

8.59
2.46
2
7
9

10

19

8.58
2.44
1
7
8

10

20

Table 3.1: Graphemic dataset length statistics.

=3 Training
1 Validation | |
1 Test

12 3 4 5 6 7 8 910111213 14 1516 17 18 19 20

Length

Figure 3.1: Graphemic dataset length distributions.
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Training Validation Test

Mean 9.75 9.79 9.77
Standard deviation 2.64 2.65 2.61
Minimum 2 2 2
25% 8 8 8
50 % 10 10 10
75 % 11 11 11
Maximum 23 21 23

Table 3.2: Phonemic dataset length statistics.

= Training
16% | M — Validation | |
LT [ 1  Test

8% [ :

Frequency
[
I

6% | . :

4% | :

2% [ |

0%

23456 7 8 910111213141516 171819 20 21 22 23
Length

Figure 3.2: Phonemic dataset length distributions.
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3.2 Text-to-speech

For the text-to-speech dataset, some requirements need to be fulfilled. First,
all data have to be audio clips of the same speaker whose voice is to be
cloned. Second, the files must be reasonably short, not exceeding 20s in
duration. Moreover, the audios need to come with a corresponding graphemic
transcription, which is then converted to a phonemic one.

For this purpose, several audio clips of a single speaker reading a narrative
text are chosen. The original audios are .wav files, with a sample rate of

22050 Hz, 16 bit of depth, and 2 channels.

3.2.1 Preprocessing

The text-to-speech pipeline works with relatively short audio clips (under
20s). Since the original files are much longer (tens of minutes), they need to
be split and cleaned.

To obtain the synchronization map between the text strings and the au-
dio, the Aeneas tool is used [57]. After the maps are created, the audio files
are split using the Pydub Python package [58]. The Pydub package is also
exploited to convert the audio from stereo to mono. To trim silence at the
beginning and the end of clips, the silenceremove feature of FFmpeg is
employed [59].

To achieve better training, clips that are too long or too short are re-
moved from the datasets. In particular, a minimum length of 1.00s and a
maximum length of 14.00s are chosen. Since the synchronized text is not
always optimally parsed, the text content is inspected as well, removing all
strings which do not contain readable characters.

Lastly, .json files are produced, with objects containing the following
keys: audio_filepath, duration, and text. The audio_filepath value
corresponds to the path of the audio file described by the object, duration
expresses the length of the clip in seconds (computed using Pydub), while
text contains the phonemized text corresponding to the audio. Before being
phonemized, all texts are properly normalized (section with a cus-

tom normalizing function. This normalization pipeline is adapted to Italian
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from the English normalizer provided by the NviDIA NeMo framework [60].
Because of the narrative nature of the texts used for training, only basic
normalization is used: if the TTS model is applied in more technical areas,

more complex normalization will be needed.

3.2.2 Dataset analysis

A part of the dataset is used for the main training, while a smaller part is
reserved for fine-tuning. The main dataset consists of 41 750 clips for a total
duration of 60.31 h, while the fine-tuning one has 10217 audios for a total
duration of 14.84 h. Both subsets are then split into training, validation, and
test. The percentages are 70 % for training, 10 % for validation, and 20 % for
test.

The main training set consists of 29237 clips for a total duration of
42.38h, while the fine-tuning one has 7154 audios for a total duration of
10.45h. For the main set, the mean duration is 5.22s with a standard devia-
tion of 3.01, the minimum duration is 1.00s, while the maximum is 13.96s.
For the fine-tuning set, the mean duration is 5.26 s with a standard deviation
of 3.08, the minimum duration is 1.00s, while the maximum is 13.96s.

The main validation set consists of 4173 clips for a total duration of 5.96 h,
while the fine-tuning one has 1023 audios for a total duration of 1.46h. For
the main set, the mean duration is 5.15s with a standard deviation of 2.98
the minimum duration is 1.00s, while the maximum is 13.96s. For the fine-
tuning set, the mean duration is 5.14 s with a standard deviation of 3.00, the
minimum duration is 1.00s, while the maximum is 13.96s.

The main test set consists of 8340 clips for a total duration of 11.97h,
while the fine-tuning one has 2040 audios for a total duration of 2.92h. For
the main set, the mean duration is 5.17s with a standard deviation of 3.01,
the minimum duration is 1.00s, while the maximum is 13.96s. For the fine-
tuning set, the mean duration is 5.15 s with a standard deviation of 3.00, the
minimum duration is 1.00s, while the maximum is 13.96s.

The duration statistics and distributions can be found in tablesB.3land
and figs. and [3.4]
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Training (s) Validation (s) Test (s)

Mean 5.22 5.15 5.17
Standard deviation 3.01 2.98 3.01
Minimum 1.00 1.00 1.00
25 % 2.76 2.76 2.80
50 % 4.56 4.52 4.48
75 % 7.04 7.00 6.92
Maximum 13.96 13.96 13.96

Table 3.3: Main dataset duration statistics.

=3 Training
16% o —1Validation | |
| 1  Test

14% i

12% 7 i

10% 1

8% — ] i

6% 1

4% s

2% i

0 % ! ! | I

\//q’ q//0‘3 fb/b’ b;o "3/% “O/(\ /\/Cb Cb/Q Q/\/Q /’\,\' /,\/% '\(/b N

Duration (s)

Figure 3.3: Main dataset duration distributions.
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Frequency
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| Training (s) Validation (s) Test (s)

Mean 5.26
Standard deviation 3.08
Minimum 1.00
25% 2.76
50 % 4.56
75 % 7.20
Maximum 13.96 1

5.14
3.00
1.00
2.84
4.44
7.00
3.96

2.15
3.00
1.00
2.76
4.48
7.04
13.96

18%

16%

14%

12%

10%

8%

6%

4%

2%

0%

Table 3.4: Fine-tuning dataset duration statistics.

=3 Training
—1Validation
1  Test

Duration (s)

Figure 3.4: Fine-tuning dataset duration distributions.
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3.3 Human evaluation

For the human evaluation part, an online questionnaire is used. The sample
consists of 321 participants, 1 is younger than 18, 86 are between 18 and 24,
66 between 26 and 39, 139 between 40 and 59, with 29 being 60 or older. 199
identify themselves as biologically female, 121 as biologically male, while 1
person prefers not to specify their biological sex. Regarding the educational
level, 227 possess at least a university degree, 90 a high school diploma,
with 4 participants having lower certificates. Out of the 321 participants,
only 2 are not native Italian speakers. The pie charts for these statistics are
shown in appendix [Bl The technical questions asked are presented in detail
in section [6.2]



Chapter 4

Architectures

4.1 Phonemization

In typical grapheme-to-phoneme approaches, the conversion is subdivided
into three parts: aligning, training, and decoding. In particular, alignment
is not always straightforward, therefore an empty symbol is often used in

addition to phonemes by phonemizer models to facilitate the process.

Long short-term memory

One of the most promising approaches when dealing with this problem con-
sists in using long short-term memory (LSTM) |61], a class of recurrent neural
networks especially suited for sequence modeling. This family of networks
avoids the need for explicit alignment before training since its dynamic con-
textual window makes it possible to see several graphemes before outputting

a phoneme.

4.1.1 Transformer-based networks

An alternative method to achieve grapheme-to-phoneme conversion is the use
of transformers [62]. The difference between a transformer-based solution
and prior encoder-decoder architectures consists in stacking self-attention

and fully connected layers for both the encoder and the decoder. Since no

33



34 CHAPTER 4. ARCHITECTURES

recurrent layers are employed, positional encoding is added to the input and

output embeddings.

4.1.2 Attention

The attention function is described as mapping a query ) and a set of key-

value pairs (K, V') to an output:

Attention (@, K, V) ft (QKT) \%4 (4.1)
ention (@, K, V) = softmax | —— .
Vi

where 1/dy, is added to prevent softmax into regions with very small gradients.

Multi-head attention

Multi-head attention obtains parallel attention layers for learning different
representations, computes scaled dot-product attention for each representa-
tion, concatenates the results, and projects the concatenation with a feedfor-

ward layer:
hi; = Attention (QWZ-Q, KWk, VWiV) (4.2)

MultiHead (Q, K, V) = concat (hy, ha, ..., hy) WO (4.3)

increasing the power of attention without computational overheads.

4.1.3 DeepPhonemizer

The model used to obtain grapheme-to-phoneme conversion is DeepPhone-
mizer [63], based on transformer models. The architecture consists of an em-
bedding module followed by a positional encoder and several self-attention
layers, each followed by a ReLU. In the end, a fully connected layer is used
to predict the phonemes. The loss function used to train the model is the

connectionist temporal classification (cTC) [64].
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4.2 Text-to-speech

For the text-to-speech task, a two-stage approach is chosen. The first step
consists in generating the mel spectrogram starting from the phonemized

text, while the second employs the vocoder.

4.2.1 FastPitch

The phoneme-to-spectrogram step is achieved using the FastPitch model [37],
a feed-forward model based on the previous FastSpeech architecture. The
main idea of the model is to apply conditioning on a fundamental frequency
estimated for every input symbol (referred to as pitch contour), addressing
the quality shortcomings of the plain feed-forward transformer architectures.
In addition, convergence is improved, and the need for knowledge distillation
is eliminated. This architecture enables spectrogram synthesis at a pace 60
times faster than real-time. In addition, offsetting the reference frequency
enables the production of naturally sounding low- and high-pitched variations

of voices, preserving the perceived speaker identity.

The FastPitch architecture (shown in fig. is composed of two feed-
forward transformer (FFTr) stacks. One stack operates in the resolution
of the input tokens, while the second one in the resolution of the output
frames. The first FFTr block produces a hidden representation h which is
used to make predictions about both average pitch and duration for every
input character using 1-dimensional CNNs (composed of 1-D convolutions and

a fully connected layer):

~

d = DurationPredictor (h), p = PitchPredictor (h) (4.4)

where d is a vector of natural numbers and p is a vector of real numbers.
The pitch is then projected to match the dimensionality of the hidden repre-
sentation (n x d) and it is added to it. The result is upsampled and converted

in a mel-spectrogram y by the output FFTr.
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| FC |
A

Nx |  FFTBlock |

> MSE Loss | 4 oo oot
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Figure 4.1: The FastPitch architecture.
Source: [37].

Duration predictor

The durations are inferred using a Tacotron model [26], trained on LJSpeech-

1.1 [65]. The duration of the input symbol i is given by:

t

d; = Z [arg max A, . =1 (4.5)

c=1

where A is the attention matrix.

Pitch predictor

Pitch ground truth is obtained using the accurate autocorrelation method
[66], with Hann windows used to calculate the windowed signal. The max-
ima of the normalized autocorrelation function then become the candidate
frequencies, with the lowest-cost path through the array of candidates calcu-
lated with the Viterbi algorithm.



4.2. TEXT-TO-SPEECH 37

Loss function

The loss function chosen to optimize the model is the summation of mean-

squared errors between mel-spectrograms, pitches, and durations:

~ 2
y-—y 5 . 2
c= |5 ralp - piz o a-alf (4.6)
2

where y, p, and d represent the ground truth vectors.

4.2.2 HiFi-GAN

The spectrogram-to-audio step employs the High Fidelity Generative Adver-
sarial Network (HiFi-GAN) model [49], which achieves higher sample quality
than autoregressive or flow-based model while also increasing the computa-
tional efficiency. The architecture proposes two discriminators consisting of
small sub-discriminators, each obtaining only a specific periodic part of the

raw waveform. A generator trained adversarially is also used.

Generator

The generator (fig. consists of a fully convolutional neural network, using
a mel spectrogram as input and upsampling it with transposed convolutions
to match the temporal resolution of raw waveforms. A multi-receptive field
fusion (MRF) module follows each transposed convolution, observing patterns
of various lengths in parallel: it returns the sum of outputs from multiple

residual blocks.

Discriminator

Since audio consists of sinusoidal signals with various periods, the need to
identify the diverse periodic patterns underlying the data arises. The multi-
period discriminator (MPD) relies on sub-discriminators, each dealing with a
portion of periodic signals of the input. An additional multi-scale discrim-
inator (MsD) is used to capture consecutive patterns and long-term depen-

dencies.
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Mel-Spectrogram |

______________

[ ky[l] x1 ConvTranspose 1
[ stride: ky[11/2, channels: h, /2

k.[n]x1 Conv
dilation: D,-[n,m, []

Raw Waveform i‘

Figure 4.2: The HiFi-GAN generator.
Source: [49].

Each sub-discriminator of the MPD only accepts equally spaced samples as
input, where the space corresponds to the period of the sub-discriminator. As
shown in fig. [4.3a] the raw audio of length T is reshaped into 2-dimensional
data of shape % x p; then, a 2-dimensional convolution is applied. The
width of the kernels in every layer is set to 1 to process the periodic samples
independently. Strided convolutional layers with leaky ReLU are used in the
sub-discriminators, before applying weight normalization.

The MSD is added to consecutively evaluate the audio sequence, operating
on different input scales: raw, x2 average-pooled, and x4 average-pooled
audios are used (fig. 4.3b)). Each sub-discriminator is a stack of strided and
grouped convolutions with leaky ReLUs. Weight normalization is applied to

the second and third sub-discriminator.

Loss function

Three different sub-losses are used to compute the final loss function.

Least squares loss functions for non-vanishing gradient flows are used as

GAN losses. The losses for the generator and the discriminator are:
Laay (D:G) = Eqy) [(D (2) = 1)* + (D (G (5)))’] (4.7)

Lan (G5 D) =E. [(D (G (s)) ~ 1) (48)
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Figure 4.3: The HiFi-GAN discriminator.
Source: [49].

where z is the ground truth audio and s is the mel-spectrogram of the ground
truth audio.

A mel spectrogram loss is also used to improve the training efficiency
of the generator and the generation fidelity. It consists of an L; distance

between the generated waveform mel spectrogram and that of the ground
truth audio:

Ly (G) = E,s) [l6 (2) = ¢ (G (5))]]] (4.9)

where ¢ is the waveform-to-spectrogram function.

The third loss function is the feature matching loss, a learned similarity
metric measured by the difference in features of the discriminator between a

ground truth sample and a generated one, defined as:

£ri(G:D) =By | L 1 ID' @ - D' G, (410)

i=1

where T is the number of layers, D? and N; are the features, and the number

of features in the layer i respectively.
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The final losses for the generator and the discriminator are:

Lo = Laav (G; D) 4+ ApmiLen (G D) + MipnLyier (G) (4.11)

ﬁD = £Adv (D, G) (412)

where >\FM =2 and )\MEL = 45.
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Chapter 5
Training

5.1 Phonemization

To create a proper Italian phonemizer, DeepPhonemizer is trained for 500
epochs. Each epoch consists of 567 steps, as the 18 173 grapheme-phoneme
pairs are divided into batches of size 32. The chosen optimizer is Adam [67],
with the default ;, B2, and € values of 0.9, 0.999, and 1 x 10~® respectively.
The learning rate is set to 1 x 10~%, with 1000 warm-up steps. The embedding
dimension for the encoding is 512, while the dimension of the feedforward
network is 1024. The number of encoder layers is 6, with 4 attention heads.
A dropout probability of 0.1 is also used in the transformer. The training loss
is shown in fig. [5.1] The evolution of the loss value in function of the num-
ber of steps highlights that probably a shorter training might be sufficient.
However, training the model is pretty fast (with the setup used, an epoch
takes less than 20s) and a longer training might be beneficial, as shown in

section [6.1]

5.2 Text-to-speech

For the text-to-speech task, three trainings are run. The first two regard
FastPitch, while the last one is for HiFi-GAN. FastPitch is trained twice, as

suggested by the documentation since this empirically gives better results.
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Figure 5.1: DeepPhonemizer training loss.
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5.2.1 FastPitch main training

To start, FastPitch is trained from scratch for 1000 epochs. The batch size
is 32. The optimizer is AdamW [68|, with the default $; and S5 values of 0.9
and 0.999 respectively and a weight decay of 1 x 107¢. The initial learning
rate is 0.001, with 1000 warm-up steps. The number of mel channels is set to
80, with a window size of 1024 and a window stride of 256. The embedding
dimension is 384, with an embedding kernel size of 3. The FFTrs are formed
of 6 layers each, with a head dimension of 64 and an inner dimension of 1536.
The duration and pitch predictors both have a kernel size of 3, a filter size

of 256, and 2 layers. A dropout of 0.1 is also used in all layers.
Regarding the loss, fig. shows that the validation one is always smaller

than the training one. This is peculiar since usually training loss tends to be
smaller, but in this case, the training value takes into consideration additional
parameters (such as CTC loss) which are not computed for validation. Other
than this peculiarity, both losses seem to behave in a quite normal way,

imparting confidence about correct training behavior.

5.2.2 FastPitch fine-tuning

After having trained the model from scratch, the weights are fine-tuned on the
second dataset, as shown in section [3.2.2] For this task, the hyperparameters
are kept the same, except for the number of epochs (decreased to 100) and

the initial learning rate (which is lowered to 2 x 107%).

The losses shown in fig. are even stranger than the ones in fig.[5.2} in
this case, a proper explanation is hard to formulate, but looking at the doc-
umentation this is apparently an expected behavior. In fact, it is suggested
to fine-tune the weights checking the outputs by ear until a satisfactory re-
sult is achieved, without relying on the loss values. An investigation of this
behavior is out of the scope of this thesis, but empirical evaluations confirm

the claims of the documentation.
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Figure 5.2: FastPitch main training loss.
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Figure 5.3: FastPitch fine-tuning loss.
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Figure 5.4: HiFi-GAN loss.

5.2.3 HiFi-GAN

The HiFi-GAN model is trained for a total of 2500000 steps. The optimizer
is AdamW, with 8, = 0.8 and 3, = 0.99. The initial learning rate is 1 x 1075
and the warm-up lasts for 50 000 steps. The number of mel channels is 80,
with a window size of 1024 and a window stride of 256.

In fig. the losses are shown only for the training set. The reason for
this is that the loss on the validation set is only computed as the L; loss
between the two mel spectrograms, while the training L5 and L losses are
the ones shown in section [4.2.2, Because of the completely different nature

of the two values, reporting the validation loss would not be useful.



Chapter 6
Evaluation

In this chapter, results are shown only for the phonemizer and the human
evaluation steps, since the text-to-speech does not have powerful metrics to
be analyzed by itself, which is the reason why human evaluation is needed

in the first place.

6.1 Phonemization

To evaluate the phonemizer, the character error rate (CER) metric is chosen.

The CER is based on the Levenshtein distance and is defined as:

S+D+1  S+D+1

CER = —7% T S+D+C

(6.1)

where S is the number of substitutions, D is the number of deletions, I is the
number of insertions, and C' is the number of correctly predicted characters.
If the lengths of the two strings match, the CER can only take values between
0 and 1, while it can grow bigger when the lengths are different. A value of
0 corresponds to a perfect score.

Mean CER is evaluated regularly on both training and validation sets,
and its evolution is shown in fig. As already anticipated in section [5.1]
the longer training brought some advantages. The epoch with the best CER
is found to be located towards the end of the training, at a moment when

the training loss is not improving anymore: the choice of a longer training,
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Figure 6.1: CER validation values.

therefore, pays back, resulting in a more accurate model. After the training
is finished, and the checkpoint with the best mean CER is chosen, the metric

is computed on all the words of the test set. The distributions are shown in
fig. 6.2

The results are very satisfactory: it is particularly positive that the distri-
bution of fig. shows a very evident peak at 0, representing a large amount
of completely correctly phonemized words. The reason why the graph itself
is shown, despite being almost completely blank, is to highlight this aston-
ishing result: even when rendered at a high scale, the size of other bins is
almost invisible, providing a visual representation of the impressive accuracy
of the model.
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6.2 Human evaluation

Regarding human evaluation, the questionnaire is structured as follows. The
voice produced by the training pipeline exposed in section together with
the ones generated by three other high-quality Italian TTS systems are used

to record the same article by Gianfranco Moroldo:

Sono sempre stato un istintivo. Ho imparato che conviene affi-
darsi a un segno, a un odore, a un sapore. Piccoli campanelli d’al-
larme che ti dicono “vai”, oppure “non andare”. Bene, quell’eli-
cottero che doveva portarci sulla collina 1383 aveva davvero un
brutto rumore. «Allora, si va?», ci urla Pip, 'accompagnatore.
«Andiamoy, risponde Oriana Fallaci. o sto seduto su un muc-
chio di casse e mangio la mia razione C, pollo e dolce alla crema.
E non mi muovo. «Si puo prendere il prossimo?», chiedo con aria
distratta. «Forse si. Ma perché?». Mentre contrattiamo, 1’eli-
cottero parte, e io ho risolto il mio problema. «Ma ti sembra il
momento di mangiare...», sbraita ’Oriana. In quella, sulla pista
di Dak To traforata dai mortai, atterra un secondo elicottero.
Scarica i morti impacchettati come liquirizie in sacchi di plastica
nera. Il pilota apre lo sportello. Ha un sorriso nervoso, quasi un
ghigno: «Chi mena buono di voi? L’altro elicottero ¢ andato in

pezzi. Una mitragliata alle pale...». [69]

Then, the four audio clips are randomly ordered and the participants are
asked to give a value on a 1-5 Likert scale to the following attributes of each

voice:

1. Expressivity;
2. Facilitation to focus on the content;
3. Facilitation to understand the text;

4. Reading naturalness;
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Figure 6.3: Questionnaire results. The column number corresponds to the
questionnaire item.

5. Pause naturalness;

6. Presence of personality and/or emotion.

A final global score from 1 to 5, used to compute the mean opinion score
(MOs), is requested as well. The aforementioned questions are chosen taking
inspiration from previous TTS quality studies , , adapting them to the
peculiarities of the present work. The results are reported in fig. [6.3

The data show that our model decisively outperforms the other existing
voices. This is particularly evident in items 1 and 6, corresponding to “ex-
pressivity” and “presence of personality and/or emotion”, but even for the

other items, the better performance is clear. Even for the MOS, arguably
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Figure 6.4: Questionnaire MOS distributions.

the most important metric, the advantage of our voice is glaring. This ex-
treme difference in the MOS values is particularly blatant when looking at
fig. 6.4 where the peak of the distribution of our voice is completely shifted
to the right compared to the other three candidates. The questionnaire in-
terface, together with the distributions for all the other items, can be found
in appendices [A] and [C]



Chapter 7
Conclusion

The aims of this thesis were mainly two. The first one was to create a robust
[talian grapheme-to-phoneme converter, with special attention reserved for
stress positioning. The second one was to exploit the phonemizer to increase

expressivity in text-to-speech and apply it to voice cloning.

7.1 Phonemization

Regarding the phonemization step, the results can be considered absolutely
satisfactory (table . The test mean CER of 0.0138 is very good even com-
pared to state-of-the-art values [62], though it must be noted that the existing
baselines (which are on average around 0.05) refer to English phonemization,
which is by nature more difficult than the Italian one, being English a less
phonetic language. An additional positive note can be derived by looking at
the wrongly predicted words: most of the mistakes regard phonemes which
even native speakers often get wrong, such as /'metsie/ instead of /'medzie/
or /'lenta/ instead of /'lenta/. When these mistakes are not considered,
therefore treating as the same phoneme (as most Italian speakers would)
open and closed vowels, /s/ and /z/, and /ts/ and /dz/, the test mean CER
goes as low as 0.0080. This means that only 0.80 % of all the phonemes are

wrongly predicted, a very impressive result.
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Dataset ‘ Mean CER Standard deviation
Training 0.0025 0.0280
Validation 0.0021 0.0244
Test 0.0138 0.0629

Table 7.1: CER values. The discrepancy between the validation CER of
the table and that of fig. [6.1] arises from the different computation method:
during training, CER is computer globally on all phonemes (not grouped in
words), while the values in this table are a mean of the values for each word.

Voice 1 2 3 4 5 6 MOS

Voice 1 260 282 287 258 273 247 3.10+0.06
Voice 2 1.88 225 245 2.08 221 167 2.6440.06
Voice 3 1.69 199 221 175 191 161 2.2040.05

Our voice | 3.61 331 338 332 3.02 352 3.90=£0.05

Table 7.2: Questionnaire results.

7.2 Human evaluation

The results of the human evaluation step are shown in table [7.2] Looking
at the MOS values, our voice surpasses the second best by 0.80, quite a wide
margin in a 1-5 Likert scale, especially when considering the standard errors
of the means, which are an order of magnitude smaller than the difference be-
tween the two values. The results met and even exceeded our expectations:
the most positive one is probably the “expressivity” score (item 1), which
is not only the highest one across the various voices but is also the high-
est scoring item for our voice, a unicum compared to the other candidates.
Therefore, the main aim of the work, which was to increase expressivity, can
be considered fully achieved. The only relatively negative result regards item
5, “pause naturalness”: even though our model surpassed all the other voices,

this value is quite low compared to the other items.
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7.3 Future work

Regarding the phonemization step, there is probably not much room for
improvement, since most of the wrongly predicted phonemes do not follow
any sort of rule in Italian. Some fine-tuning on a dataset containing many
words with the aforementioned phonemes might be considered.

For text-to-speech, there are two main ways future work might explore.
The first one consists in improving pause naturalness, the item with the
lowest score in the questionnaire: some specific training regarding the treat-
ment of punctuation could be a solution to this, maybe paired with some
rule-based processing of silences. The other area to investigate is the possi-
bility to make voice cloning for new speakers easier: in this thesis, a huge
dataset with paired audio and text was used, but this is not a viable solution
for most speakers. A first step might be trying to re-use the weights of our
main FastPitch training as a backbone and to fine-tune the model on other
speakers, which requires much fewer data. Another approach could consist in
exploiting an automatic speech recognition architecture to produce the writ-
ten text for stand-alone audio clips, which are much easier to obtain for most
speakers, especially for journalists. The usage of a custom end-to-end model,
using raw audio of new speakers as the sole input to fine-tune FastPitch and

HiFi-GAN and achieve voice-cloning, would also be interesting.
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APPENDIX A. INTERFACE

Questionario tesi Text-to-Speech

Il presente questionario & parte di una tesi sul Text-to-Speech in italiano (sintesi vocale
artificiale partendo da un testo scritto). Ai partecipanti sara chiesto di valutare la qualita di
4 voci differenti.

Saranno presentati 4 audio contenenti lo stesso articolo letto dalle diverse voci. Al termine
di ogni audio, che durera circa 1 minuto, verra chiesto di valutare 6 affermazioni e di
giudicare la qualita complessiva della voce.

Le voci potrebbero non essere in ordine (ad es. la voce 3 potrebbe essere presentata
prima della voce 2).

In caso di compilazione da smartphone potrebbe essere necessario scorrere
orizzontalmente per visualizzare tutti i valori delle scale.

Si raccomanda |'utilizzo di un paio di cuffie.

Grazie per la collaborazione!

Per info: martinomare.pulici@studenti.unibo.it

Accedi a Google per salvare i risultati raggiunti. Scopri di piu

*Campo obbligatorio

Figure A.1: The questionnaire introduction.
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Attribuire un punteggio da 1 (pessimo) a 5 (ottimo) alle seguenti caratteristiche
della voce

Naturalezza
delle pause

Espressivita

Aiuta a

comprendere il O O O O O

testo

Aiuta a

concentrarsi sul

contenuto del O O O O O
testo

Presenza di

personalita e/o O O O O O

emozione

Naturalezza O O O O O

della lettura

Che punteggio assegneresti alla qualitd complessiva della voce (tenendo conto
della sua natura sintetica)?

Pessima O O O O O Ottima

*

*

Figure A.2: The questionnaire interface.
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20.56% 26.79% Oo<17
O 18-25
0 26-39
| 40-59
W > 60

Figure B.1: Partecipants age.

[0 Female
0 Male
O Prefers not to specify

Figure B.2: Partecipants biological sex.



O University degree
O High school diploma

[ Lower certificates

Figure B.3: Partecipants educational level.

[ Italian
O Other

Figure B.4: Partecipants native language.
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Figure C.1: Expressivity distributions.
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Figure C.2: Facilitation to focus on the content distributions.
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Figure C.3: Facilitation to understand the text distributions.
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Figure C.4: Reading naturalness distributions.
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Figure C.5: Pause naturalness distributions.
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Figure C.6: Presence of personality and/or emotion distributions.
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