
Università degli Studi di Milano

FACOLTÀ DI SCIENZE E TECNOLOGIE

Corso di Laurea in Fisica

Elaborato Finale

Improving Suppression of Jets from Pileup at High Luminosity
LHC Using Timing Information from the High Granularity

Timing Detector for ATLAS

Relatore:

Prof. Leonardo C. Carminati

Correlatori:

Dott. Silvia Resconi
Dott. Marianna Testa
Dott. Ruggero Turra

Candidato:

Martino M. L. Pulici
Matricola 918820

Anno Accademico 2019–2020

i

A mio nonno

Sommario

In un acceleratore insieme alle collisioni di interesse (“collisioni dure”), ne avven-
gono di secondarie (“collisioni soffici” o “di pileup”): distinguere i getti provenienti
dalle collisioni dure da quelli provenienti dalle collisioni soffici sarà una delle sfide
nella prossima fase ad Alta Luminosità di lhc. Per far fronte all’aumento degli
eventi secondari sarà introdotto l’High Granularity Timing Detector : esso asse-
gnerà una misura temporale alle tracce di particelle cariche ed escluderà tutte le
tracce non compatibili con il tempo globale di evento. La distinzione di getti pri-
mari e secondari può essere effettuata utilizzando un Boosted Decision Tree, un
algoritmo di apprendimento supervisionato che ottimizza una Funzione Obiettivo
per classificare efficientemente e correttamente alcuni dati. In questa tesi il primo
approccio al problema di classificazione di getti primari e secondari è stato l’utiliz-
zo di sole variabili di alto livello per l’addestramento, ottenendo un miglioramento
considerevole utilizzando variabili di tempo. È stato quindi esplorato il potenziale
delle variabili di basso livello, con e senza l’utilizzo dell’informazione temporale. È
stato trovato che la configurazione base di basso livello ottiene prestazioni superiori
rispetto al miglior caso con variabili di alto livello, con un ulteriore miglioramento
garantito dall’utilizzo di informazioni temporali di basso livello.

Abstract

In an accelerator, together with the collisions of interest (“hard collisions”), sec-
ondary ones (“soft” or “pileup collisions”) take place: discriminating jets coming
from hard collisions from the ones coming from soft collisions will be one of the
main challenges in the forthcoming will be introduced: it will assign a time mea-
surement to charged particle tracks and exclude all the tracks which are not com-
patible with the global event time. The discrimination of signal and background
jets can be done by using a Boosted Decision Tree, a supervised learning algo-
rithm that optimizes an Objective Function in order to efficiently and correctly
classify some data. In this thesis, the first approach to the signal and background
jet classification problem was to use only high-level jet variables in the training,
obtaining a considerable improvement when timing variables were used. Then, the
potential of low-level track variables was explored, with and without the usage
of timing information. It was found that the basic track configuration performs
notably better than the best jet case, with a further improvement granted by the
usage of low-level timing information.

iv

Contents

List of figures ix

List of tables xi

Foreword xiii

I THEORETICAL BACKGROUND 1

1 The Large Hadron Collider and the atlas detector 3
1.1 Luminosity . 3
1.2 Hard and soft collisions . 4
1.3 The Large Hadron Collider . 4
1.4 Atlas . 7

1.4.1 The atlas frame of reference 8
1.4.2 The Inner Detector . 9
1.4.3 The Calorimeter . 10
1.4.4 The Muon Spectrometer . 11
1.4.5 The Magnet System . 12

1.5 High Luminosity lhc . 13
1.5.1 Physics motivations of hl-lhc 14

1.6 The High Granularity Timing Detector 15
1.6.1 The detector . 15
1.6.2 Suppression of pileup jets 16

2 Object reconstruction 19
2.1 Jet reconstruction . 19

2.1.1 Jet inputs . 19
2.1.2 Jet algorithms . 20
2.1.3 Jet grooming . 20

2.2 Jet calibration . 20

v

vi CONTENTS

3 Boosted Decision Trees 23
3.1 Supervised learning . 23

3.1.1 Models and parameters . 23
3.1.2 The Objective Function . 23

3.2 Decision tree ensembles . 25
3.3 Tree boosting . 26

3.3.1 Additive training . 26
3.3.2 Model complexity and tree structure score 28
3.3.3 Learning the tree structure 29

3.4 Lightgbm . 30
3.4.1 Optimization in speed and memory usage 30
3.4.2 Optimization in accuracy . 31
3.4.3 Applications and metrics . 32
3.4.4 Hyperparameters . 33

II ANALYSIS AND RESULTS 35

4 Jet variables 37
4.1 Jet variable distributions . 38

4.1.1 jet_pt . 38
4.1.2 jet_eta . 38
4.1.3 jet_phi . 38
4.1.4 jet_Rpt . 38
4.1.5 jet_t0comp . 39
4.1.6 jet_sign . 39
4.1.7 jet_NtrkTime . 39

4.2 Bdt training . 50
4.2.1 Roc curves . 50

5 Track variables 55
5.1 Track variable distributions . 55

5.1.1 Ntrks . 55
5.1.2 trk_pt . 55
5.1.3 trk_eta . 56
5.1.4 trk_phi . 56
5.1.5 trk_d0 . 56
5.1.6 trk_z0 . 56
5.1.7 trk_time . 56

CONTENTS vii

5.2 Bdt training . 61
5.2.1 Effect of trk_eta . 61
5.2.2 Effect of the number of tracks 61
5.2.3 Timing information . 62

6 Conclusion 67

A The code 69
A.1 Variables . 69

A.1.1 One-dimensional histogram 70
A.1.2 Two-dimensional histogram 71
A.1.3 Average plot . 72

A.2 Bdt training . 74
A.2.1 Hyperparameters optimization 74
A.2.2 Training . 75
A.2.3 Training plots . 76
A.2.4 Roc curves . 77

Bibliography 79

viii CONTENTS

List of figures

1.1 An event with very high pileup . 4
1.2 The various stages of cern accelerators 5
1.3 Peak luminosity at lhc in 2017 for p-p collisions 5
1.4 Integrated luminosity at lhc . 6
1.5 A cross section of the lhc magnet system 7
1.6 The atlas detector . 8
1.7 The atlas frame of reference . 8
1.8 The Inner Detector . 9
1.9 The atlas Calorimeter . 10
1.10 The Muon Spectrometer . 12
1.11 The lhc timeline . 14
1.12 The High Granularity Timing Detector 15
1.13 The Low Gain Avalanche Detector 16

2.1 Jet reconstruction and calibration overview 19

3.1 Bias-variance tradeoff . 24
3.2 A simple cart example . 25
3.3 A less simple cart example . 26
3.4 An example of score calculation . 29
3.5 Research of optimal split . 29
3.6 Level-wise tree growth . 31
3.7 Leaf-wise tree growth . 31

4.1 Feynman diagram of Higgs boson decay 37
4.2 Distributions of jet_pt . 40
4.3 1-dimensional distributions of jet_eta 41
4.4 2-dimensional distributions of jet_eta 41
4.5 jet_pt as a function of jet_eta . 42
4.6 1-dimensional distributions of jet_phi 42

ix

x LIST OF FIGURES

4.7 2-dimensional distributions of jet_phi 43
4.8 jet_phi as a function of jet_pt . 43
4.9 1-dimensional distributions of jet_Rpt 44
4.10 2-dimensional distributions of jet_Rpt 44
4.11 jet_Rpt as a function of jet_pt . 45
4.12 1-dimensional distributions of jet_t0comp 45
4.13 2-dimensional distributions of jet_t0comp 46
4.14 jet_t0comp as a function of jet_pt 46
4.15 1-dimensional distributions of jet_sign 47
4.16 2-dimensional distributions of jet_sign 47
4.17 jet_sign as a function of jet_pt 48
4.18 1-dimensional distributions of jet_NtrkTime 48
4.19 2-dimensional distributions of jet_NtrkTime 49
4.20 jet_NtrkTime as a function of jet_pt 49
4.21 The loss part of the Objective Function 51
4.22 Number of splits per feature, low pT range 52
4.23 Number of splits per feature, high pT range 52
4.24 One of the prediction distributions 53
4.25 An example of a generic roc curve 53
4.26 The roc curves for trainings using jet variables 54

5.1 Distributions of Ntrks . 57
5.2 Distributions of trk_pt . 57
5.3 Distributions of trk_pt_norm . 58
5.4 Distributions of trk_eta . 58
5.5 Distributions of trk_phi . 59
5.6 Distributions of trk_d0 . 59
5.7 Distributions of trk_z0 . 60
5.8 Distributions of trk_time . 60
5.9 Roc curves with and without trk_eta 63
5.10 Roc curves with 5 and 10 tracks 64
5.11 Roc curves with and without timing 65

6.1 Roc curves with notable variable combinations 68

List of tables

1.1 Various lhc machine parameters 6

4.1 The auc values for trainings using jet variables 51

5.1 Auc values with and without trk_eta 61
5.2 Auc values with 5 and 10 tracks . 62
5.3 Auc values with and without timing 62

6.1 Auc values for notable variable combinations 67

xi

xii LIST OF TABLES

Foreword

In an accelerator, particles are propelled at speeds close to the light’s speed and are
made to collide. Events of this kind are particularly crucial for physicists since at
such high speeds the collision energy can be converted into matter (according to the
well-known E = mc2 equation), enabling the investigation of sub-atomic particle
creation and other phenomena. For example, the collision between protons can
lead to the production of Higgs bosons or top quarks, whose study is crucial for
understanding the fundamental laws governing the Universe. These interesting
particles have very short lifetimes, quickly decaying into lighter ones. In some
cases, what is measured is a collection of hadrons (jets) emerging from the collision
vertices.

In addition to the primary collisions, where physics events of interest occur,
additional ones take place. In these secondary collisions, typically low transverse
momentum jets are produced. These unwanted jets are known as pileup jets,
and discriminating them from signal ones is one of the main challenges at hadron
colliders. Doing so is particularly challenging when the instantaneous luminosity is
high, such as at lhc, even more at hl-hlc. In this thesis, an algorithm based on
machine learning techniques will be used to discriminate between hard-scatter jets
and pileup jets. The information deriving from the new High Granularity Timing
Detector will be used to increase the algorithm’s discriminating power.

Until now, timing information was included in high (jet) level variables, po-
tentially missing some low-level information contained in the single tracks which
compose jets. This thesis has two aims: the first one is to check whether the usage
of track information may increase the algorithm’s performance; the second one is
to evaluate the importance of track-level timing information provided by the High
Granularity Timing Detector.

This thesis is organized as follows: in Chapter 1, the Large Hadron Collider
and the atlas detector will be presented, together with a description of the hgtd

detector; in Chapter 2, the jet reconstruction procedure will be briefly illustrated;
in Chapter 3, the concept of Boosted Decision Trees will be introduced, looking
at the Lightgbm framework and its characteristics with particular attention; in

xiii

xiv FOREWORD

Chapter 4, the high-level variables characterizing a jet will be defined and analyzed,
before evaluating their usage in the training of the bdt; in Chapter 5, the low-
level variables will be studied, and their impact on the bdt performance will be
assessed; in Chapter 6, the results found in Chapters 4 and 5 will be compared, in
order to come to a conclusion regarding the two aims of the thesis.

Part I

THEORETICAL BACKGROUND

1

Chapter 1

The Large Hadron Collider and the
atlas detector

1.1 Luminosity

Luminosity is one of the most important quantities to describe collisions and can be
intuitively understood as the measure of how many collisions are happening in an
accelerator [1]. Since a higher number of collisions makes it more likely to observe
a certain process, luminosity L can be more precisely defined as the proportionality
factor between the event rate dN

dt
and the cross section σ:

dN

dt
= Lσ (1.1)

where the cross section σ is a way to measure the probability of something hap-
pening and is measured in barns (1 b = 10−28m2).

It is also intuitive that the event rate must be proportional to the number
of bunches nb, to the square of the number of protons per bunch N2

bunch, to the
collision frequency f , and to the reciprocal of the beams’ area S, giving:

dN

dt
=
nbN

2
bunchf

S
σ (1.2)

Combining Eqs. (1.1) and (1.2) it is then possible to find an explicit expression
for luminosity:

L =
nbN

2
bunchf

S
(1.3)

Another essential quantity to describe the accelerator is given by the integrated
luminosity,

∫
Ldt, which is a measurement of the data size.

3

4 CHAPTER 1. THE LHC AND THE ATLAS DETECTOR

1.2 Hard and soft collisions

In a particle accelerator, the majority of events originate from large-distance col-
lisions between protons. Since the transferred momentum is small, events of this
kind take the name of “soft collisions” [2]: the jets produced tend to have large
longitudinal momentum and small transverse momentum. An example of an event
with a very high number of pileup vertices is shown in Fig. 1.1. Even though these
collisions represent the majority of interactions, they are not very interesting.

Figure 1.1: An event with very high pileup

Sometimes, though, collisions occur between two partons of the incoming pro-
tons, resulting in large momentum transfer (“hard collisions”). For such events, the
resulting jets can be produced at large angles, creating massive particles. These
interesting events are sporadic, though: for example, the W boson production
through quark-antiquark annihilation has a cross section 105 times smaller than
the total inelastic p-p cross section.

1.3 The Large Hadron Collider

The Large Hadron Collider (lhc) [3] is the world’s largest and most powerful
particle accelerator, built between 1998 and 2008 by the European Organization
for Nuclear Research (cern, from the French Conseil Européen pour la Recherche
Nucléaire). As shown in Fig. 1.2, lhc is not the first accelerator built at cern,
but rather the last step in a series of projects starting in 1959 with the Proton
Synchrotron, which accelerated protons to an energy around 500 times smaller
than lhc. Lhc is designed to accelerate two proton (or heavy ion) beams at a
center of mass energy of 7TeV. Its luminosity values range around 1034cm−2s−1,
as shown in Fig. 1.3, with a record set in 2017 of 2.06× 1034 cm−2s−1. Integrated
luminosity for various years is also shown in Fig. 1.4.

1.3. THE LARGE HADRON COLLIDER 5

Figure 1.2: The various stages of cern accelerators

Figure 1.3: Peak luminosity at lhc in 2017 for p-p collisions

6 CHAPTER 1. THE LHC AND THE ATLAS DETECTOR

Figure 1.4: Integrated luminosity at lhc

Momentum at collision 7TeV
Momentum at injection 450GeV
Machine circumference 26 658.883m
Revolution frequency 11.2455 kHz
Luminosity 1034cm−2s−1

Particles per bunch 11× 1011

Bunch separation 24.95 ns
Bunch spacing 7.48mm

Table 1.1: Various lhc machine parameters

Lhc consists of a 27-kilometer ring of superconducting magnets and acceler-
ating cavities, making two high-energy particle beams travel at energies close to
7× 1012 eV, with a speed corresponding to 99.999 999% that of light, in ultrahigh
vacuum1. The strong magnetic field needed, which reaches 8.3T, is maintained
by 1624 superconducting electromagnets (Fig. 1.5) chilled to a temperature of
−271.3 ◦C by a distribution system of liquid helium. Some other machine parame-
ters are reported in Table 1.1. When the beams reach the required energies they are
made to collide at four locations: A Toroidal Lhc ApparatuS (atlas), Compact
Muon Solenoid (cms), A Large Ion Collider Experiment (alice) and lhc-beauty
(lhcb).

1Equivalent to some 10−6 mbar.

1.4. ATLAS 7

Figure 1.5: A cross section of the lhc magnet system

1.4 Atlas

Atlas [4], shown in Fig. 1.6, is a general-purpose particle physics experiment,
comprising about 3000 scientific authors from 181 institutions around the world,
designed to exploit the opportunities provided by lhc to their fullest. The basic
questions atlas physicists are trying to answer are the ones regarding the pre-
dictions of the Standard Model, such as the existence of the Higgs boson finally
discovered in 2012. Other investigation areas are the search for extra dimensions
and for particles that could make up dark matter.

Atlas [5] is the largest detector ever constructed, 46-kilometer long, 25m in
diameter, sitting in a cavern 100m below ground and weighing around 7000 t.
It consists of three different concentrically wrapped detecting subsystems which
individually record trajectory, momentum, and energy of particles. Every second
in the atlas detector over a billion particle interactions take place. Out of them,
around a thousand are flagged as potentially useful and recorded, with a ratio of
one in a million interactions.

The detector comprises four main components: the Inner Detector, the Calorime-
ter, the Muon Spectrometer, and the Magnet System.

8 CHAPTER 1. THE LHC AND THE ATLAS DETECTOR

Figure 1.6: The atlas detector

1.4.1 The atlas frame of reference

When dealing with atlas data, some coordinates are given using the frame of
reference shown in Fig. 1.7. The z coordinate represents the longitudinal position
along the beam axis, x represents the coordinate pointing toward the center of
lhc, while y is directed upwards. Two angular coordinates are also defined: an
azimuthal angle θ and a polar angle φ.

x

y

z

P

LHC

φθ

Figure 1.7: The atlas frame of reference

1.4. ATLAS 9

In addition, another variable, known as pseudorapidity, is often used. Pseudo-
rapidity η is a spatial coordinate defined as:

η := − log

[
tan

(
θ

2

)]
(1.4)

Pseudorapidity can therefore range between η = −∞ and η = +∞.

1.4.2 The Inner Detector

The Inner Detector (Fig. 1.8) is immersed in a magnetic field parallel to the beam
axis and is the component closest to the beam pipe. It covers the pseudorapidity
region |η| < 2.5 and consists of one barrel and two end-caps. It measures direction,
momentum, and charge of electrically-charged particles produced in the collisions:
in particular, its typical momentum resolution is:

σpT
pT

≈ 0.05%pT ⊕ 1% (1.5)

Figure 1.8: The Inner Detector

The Inner Detector is composed of three different systems of sensors: the Pixel
Detector, the Semiconductor Tracker, and the Transition Radiation Tracker.

The Pixel Detector

The Pixel Detector is made up of silicon pixel sensors arranged in four cylindrical
layers in the barrel and three discs in the end-caps. It has an area of 1.7m2 and is
composed of 80 million pixels, for a power consumption of 15 kW. Each of the 1744
modules has 46 080 pixels, exhibiting a typical single-hit resolution of 14×115 µm2

in Rφ.

10 CHAPTER 1. THE LHC AND THE ATLAS DETECTOR

The Semiconductor Tracker

The Semiconductor Tracker (sct) is composed of silicon micro-strips with a 80 µm
pitch, and organized in 4088 two-sided modules, for a total of over six million
channels. The 60m2 of silicon are distributed over nine cylindrical barrel layers
and nine planar end-cap discs glued together in couples with a stereo angle of 10 µm
to provide four space points. The sct allows the position of charged particles to
be recorded with an accuracy of 17 µm per layer in Rφ.

The Transition Radiation Tracker

The Transition Radiation Tracker (trt) has a volume of 12m3, for a total of 350 000
readout channels. The basic detector element of the trt is a 4-millimeter-diameter
straw tube with a 0.03-millimeter-diameter gold-plated tungsten wire in the middle.
Each straw tube works as a drift chamber. There are 50 000, 144-centimeter-long
straws in the barrel, and 250 000, 39-centimeter-long straws in both end-caps. The
trt has a precision of around 0.17mm and provides additional information on the
particle type, exploiting the measurement of the transition radiation.

1.4.3 The Calorimeter

The function of the Calorimeter (Fig. 1.9) is to measure the particle energy lost
through the detector [6]. Calorimeters are designed to stop entirely or absorb most
of the particles coming from a collision and are typically composed of alternating
passive and active layers. Calorimeters can be electromagnetic, measuring the
energy of electrons and photons, or hadronic, measuring the energy of hadrons.

Figure 1.9: The atlas Calorimeter

1.4. ATLAS 11

The Electromagnetic Calorimeter

The Electromagnetic Calorimeter has a length of 6.65m and an external radius
of 2.25m. The central barrel region covers the pseudorapidity region of |η| < 1.4,
while the end-caps extend the coverage up to |η| = 3.2. It is made up of 2-millimeter
layers of liquid argon as the active medium and copper as the passive one. It has
a thickness of 22 times the radiation length in the barrel and more than 24 times
the radiation length in the end-caps. It is segmented in 190 000 cells along η and
φ and has four longitudinal layers. Its nominal resolution is:

σE
E

≈ 10%√
E

⊕ 0.7% (1.6)

The Hadronic Calorimeter

The Hadronic Calorimeter is 6.10-meter-long, with an outer radius of 4.5m, cov-
ering the pseudorapidity range |η| < 3.9. The central barrel region (|η| < 1.7) uses
scintillators and iron as passive medium. In the end-cap Hadronic Calorimeter
(hec), liquid argon is the active medium, with copper and tungsten as absorbers.
For η = 0 the thickness is 11 times the nuclear interaction length. Its nominal
resolution is:

σE
E

≈ 50%√
E

⊕ 3% (1.7)

The Forward Calorimeter

The Forward Calorimeter (FCal) is placed at a distance of 4.7m from the interac-
tion point and measures both electromagnetic and hadronic showers. The electro-
magnetic part utilizes liquid argon as the active medium and copper as the passive;
the hadronic parts use tungsten as the passive material. Its nominal resolution is:

σE
E

≈ 100%√
E

⊕ 10% (1.8)

1.4.4 The Muon Spectrometer

As already discussed, muons pass through the Inner Detector and the Calorimeters;
therefore, the need for a specific Muon Spectrometer (Fig. 1.10) arises. It is made
up of 4000 individual muon chambers and, using four different technologies, identi-
fies and measures the momenta of muons, exploiting the curvature in the toroidal
magnetic field. The Muon Spectrometer has four subsections: the Monitored Drift
Tubes, the Cathode Strip Chambers, the Thin Gap Chambers, and the Resistive
Plate Chambers.

12 CHAPTER 1. THE LHC AND THE ATLAS DETECTOR

Figure 1.10: The Muon Spectrometer

The Monitored Drift Tubes and the Cathode Strip Chambers

The Monitored Drift Tubes (|η| < 2.7) measure the muons tracks with a resolution
of 80 µm. They are composed of 1171 chambers with a total of 354 240 tubes, each
with a diameter of 3 cm and a length between 0.85 and 6.5m.

The Cathode Strip Chambers (2 < |η| < 2.7) consist of 70 000 channels with a
60 µm resolution. Their function is to measure precise coordinates at the ends of
the detector.

The Thin Gap and the Resistive Plate Chambers

The Thin Gap Chambers (1.05 < |η| < 2.7) and the Resistive Plate Chambers
(|η| < 1.5) are made up of respectively 440 000 and 380 000 channels. They provide
fast trigger signals for the central atlas trigger and the drift time measurement
in the drift chambers.

1.4.5 The Magnet System

The Magnet System’s function is to bend particles around the various detectors’
layers to allow momentum measurement of charged particles. There are three parts
in the Magnet System: the Central Solenoid Magnet, the Barrel Toroid, and the
End-Cap Toroids.

1.5. HIGH LUMINOSITY LHC 13

The Central Solenoid Magnet

The Central Solenoid Magnet bends charged particles for momentum measurement
in the Internal Detector volume. It is 5.3-meter-long and 4.5-centimeter-thick,
for a diameter of 2.4m and a weight of 5 t. 7.73 kA of current flow in 9 km of
superconducting wire, generating a magnetic field of 2T with a stored energy of
38MJ.

The Barrel Toroid

The Barrel Toroid has a length of 25.3m and an outer diameter of 20.1m, weighing
830 t. A magnetic field of 0.5T is created by eight separate coils, with a total
stored energy of 1.08GJ. The 100-kilometer-long superconducting wire works at a
temperature of 4.7K, with a nominal current of 20.5 kA.

The End-Cap Toroid

The End-Cap Toroid is made up of eight coils, each storing an energy of 0.25GJ. It
is 5-meter long, with an outer diameter of 10.7m and a weight of 240 t. A current
of 20.5 kA flowing through a superconductor at the temperature of 4.7K generates
a field of 1T.

1.5 High Luminosity lhc

In 2026 lhc will enter the High Luminosity (hl-lhc) phase [7], in which an inte-
grated luminosity of up to 4000 fb−1 will be delivered in about ten years, as shown
in Fig. 1.11. Instantaneous luminosity will reach 7.5× 1034 cm−2s−1, more than
three times the current value. The interaction region will spread over 50mm along
the axis, for an average of 1.6 collisions per millimeter, compared to the current
0.24.

To cope with these conditions, atlas will need a series of important upgrades:
in general, both data acquisition and trigger systems are being upgraded, espe-
cially in terms of faster electronics, to achieve the desired output rate. The Inner
Tracker will cover up to |η| < 4, and muon coverage will be extended. Tracking,
vertexing, muon triggering, and timing will also be improved. The large amount of
available data will grant the opportunity to explore Standard Model physics with
unprecedented precision and boosting the search for new physics and dark matter.

14 CHAPTER 1. THE LHC AND THE ATLAS DETECTOR

Figure 1.11: The lhc timeline

1.5.1 Physics motivations of hl-lhc

One of the opportunities offered by hl-lhc in the field of electroweak physics will
regard a more precise determination of the W boson mass, pushing uncertainty
down to 10MeV. Moreover, vector boson scattering processes, which are essential
to test electroweak symmetry-breaking mechanisms, are expected to be observed.

Another measurement that hl-lhc will make possible is that of the top mass
value from J/ψ → µµ decays, which is orthogonal to jet-based measurements.
Besides, the high amount of data will allow rare Standard Model processes to be
observed, such as the production of four-top quarks.

After having been observed by lhc in 2012, the properties of the Higgs boson
will be investigated as one of the main goals of hl-lhc. In particular, exploiting
the large amount of produced Higgs bosons, all couplings will be measured with
a percent-level precision. Rare decay models such as H → µµ or H → Zγ could
also be observed. Atlas and cms will extract the self-coupling of the boson with
a significance of around 3σ each, for an overall significance of 4σ.

Other research fields might include dark matter, the flavor problem, neutrino
masses, the strong CP problem, and baryogenesis. The new particles predicted
for these events will be searched for thanks to the much larger statistics, slightly
higher energy, and upgraded detectors.

1.6. THE HIGH GRANULARITY TIMING DETECTOR 15

1.6 The High Granularity Timing Detector

Since high luminosity is correlated with a higher occurrence of background events,
the main challenge of hl-lhc will be to reject the particles produced by pileup.
To face this issue, the High Granularity Timing Detector (hgtd), a device with a
time resolution of 30 ps in the forward region [8], has been proposed (Fig. 1.12).

Figure 1.12: The High Granularity Timing Detector

The idea behind hgtd is to assign a time measurement to charged particle
tracks and then using the timing information together with the already available
longitudinal impact parameter to exclude all the tracks which are not compatible
in time with the hard-scatter interaction. Hgtd will also improve luminosity
measurements and the general performance of the atlas detector in the forward
region.

1.6.1 The detector

The detector will be placed in front of the End-Cap Calorimeters, covering the |η|
region from 2.4 to 4. The active radius will range between 120mm to 640mm,
with a thickness not over 125mm. Low Gain Avalanche Detectors with an active
thickness of 50 µm will be used, with pixels of 1.3× 1.3mm2. Because of the high
particle rate in the region, radiation will damage the sensors’ electronics, decreasing
the timing resolution as a function of integrated luminosity. Therefore, some of
the sensors will probably have to be replaced after half of the detector’s lifetime.

16 CHAPTER 1. THE LHC AND THE ATLAS DETECTOR

Low Gain Avalanche Detectors

The hgtd will be made of Low Gain Avalanche Detectors (lgad’s), shown in Fig.
1.13. Lgad’s are silicon diode sensors with an internal gain provided by an extra
p-type layer added below the p-n junction. To obtain the desired 30-picosecond
timing resolution, the time walk and the time jitter need to be accounted for. Both
of these effects are inversely proportional to the signal’s rise time; thus, a high slope
and a high gain need to be used. Therefore, sensors will have an active thickness
of 50 µm and a gain of 20.

Figure 1.13: The Low Gain Avalanche Detector

1.6.2 Suppression of pileup jets

As already discussed, suppression of pileup jets is one of the main reasons why
hgtd will be installed in the atlas detector. A simple variable to effectively
discriminate the jets is RpT , defined as:

RpT =

∑
ptrkT (PV0)

pjetT

(1.9)

where
∑
ptrkT (PV0) is the sum of the transverse momenta of all the tracks inside

the jet cone and originating from the hard-scatter vertex PV0, while pjetT is the fully
calibrated jet transverse momentum. In general, small values of RpT correspond
to jets with a small fraction of pT originating from the vertex PV0, probably indi-
cating a pileup jet. However, at high pileup conditions, the discriminating power

1.6. THE HIGH GRANULARITY TIMING DETECTOR 17

of this variable is reduced, because of the worsening of the longitudinal impact pa-
rameter resolution, which results in pileup tracks being incorrectly included in the
numerator of RpT , thus the need to use timing information obtained from hgtd.

18 CHAPTER 1. THE LHC AND THE ATLAS DETECTOR

Chapter 2

Object reconstruction

As already anticipated, particles produced in collisions cannot be directly detected.
The partons undergo fragmentation and recombine to form a collimated jet of
hadrons with a total momentum pointing approximately in the same direction as
the initial parton. In other words, jets are a tool to represent groups of hadrons in
a detector and need to be reconstructed and calibrated (Fig. 2.1).

Figure 2.1: Jet reconstruction and calibration overview

2.1 Jet reconstruction

Jet reconstruction consists of three primary stages: input definition, parameter
definition, and jet grooming.

2.1.1 Jet inputs

Atlas primarily uses topologically-grouped noise-suppressed clusters (topo-clusters)
of calorimeter cells as inputs [9]. Topo-clusters are formed from seed cells with more
than 4σ of energy, where σ represents the average noise expected in the cell. Noise

19

20 CHAPTER 2. OBJECT RECONSTRUCTION

can be of two kinds: electronic and pileup, with pileup noise dominating in current
data-taking. All cells adjacent to the seed, provided they have at least 2σ of energy,
are then grouped, repeating the process until there are no more suitable cells. In
the end, all calorimeter cells adjacent to the topo-cluster are added as well.

2.1.2 Jet algorithms

For jet reconstruction, atlas uses the FastJet software library, in particular the
anti-kt algorithm [10]. The algorithm works as follows:

1. For each pair of particles, the kt distance is calculated as:

dij = min

(
1

k2ti
,
1

k2ij

)
∆R2

ij

R2
(2.1)

where ∆R2
ij = (yi − yj)

2 + (φi − φj)
2, with kti, yi and φi as the transverse

momentum, the rapidity, and the azimuth of particles. The beam distance is
also calculated as diB = 1

k2ti
.

2. The minimum dmin is calculated for all the dij and diB. If it is a dij, the
particles i and j are merged; if it is a diB, the particle i is declared as a final
jet.

3. The procedure is repeated for all of the particles.

The distance parameterR is used to distinguish between jets with smallR (R = 0.4,
for jets representing quarks and gluons) and large R (R = 1.0, for jets representing
hadronically decaying massive particles).

2.1.3 Jet grooming

Grooming refers to a class of algorithms that discard some constituents with a
defined strategy. It is only applied to large-R jets to damp the increased sensitivity
to pileup effects caused by the larger fraction of the calorimeter enclosed within
the jet volume.

2.2 Jet calibration

The need for this step comes from the fact that a large fraction of the hadronic
shower energy is not visible to the detector, for example by ending up in volumes
without active sensors. Since this energy is not observed, it must be recovered

2.2. JET CALIBRATION 21

to calculate the Jet Energy Scale (jes) accurately. As the name suggests, this is
usually done by comparing the reconstructed jets and an mc particle simulation,
known as “truth jets.” The response Xreco

Xtruth
is then used to calibrate the average

reconstructed jet, usually in fine bins of both pseudorapidity and energy.
Large-R jets ideally have a well-defined mass; therefore, it is useful for these

jets to have a mass corresponding to the parent massive particle to help identify
and interpret events. Thus, truth is again matched to reconstructed jets, this time
with mass response rather than energy, resulting in a so-called Jet Mass Scale
(jms) calibration.

Small-R jets undergo an additional step, applying the Global Sequential Cali-
bration (gsc), which further refines the algorithm by considering shower develop-
ment and flavor differences. This step does not change the central values of the
jes, but rather reduces the differences between different populations.

Besides, known physical processes can be used to perform an in situ calibra-
tion. This kind of technique provides very precise results: small-R jets have a jes

uncertainty of around 1% while large-R jets have an uncertainty of 1–2%.

22 CHAPTER 2. OBJECT RECONSTRUCTION

Chapter 3

Boosted Decision Trees

3.1 Supervised learning

The locution “supervised learning” refers to a class of algorithms that learn the
function that maps an input to an output from a labeled training sample [11].

3.1.1 Models and parameters

When talking about “models” in supervised learning, one usually refers to the
mathematical structure which predicts yi starting from xi. The simplest example
is the linear model where the prediction is in the form ŷi =

∑
j θjxij, basically a

weighted linear combination of the inputs.

The parameters need to be learned from the training dataset: for example, in
linear regression problems, the parameters are the coefficients θ.

3.1.2 The Objective Function

The term “training” refers to the process of finding the best parameters θ for the
training data xi and labels yi. The way the model is trained is through the usage
of an Objective Function (Obj), which is made up of two parts: the training loss
L and the regularization term Ω:

Obj (θ) = L (θ) + Ω (θ) (3.1)

23

24 CHAPTER 3. BOOSTED DECISION TREES

Training loss

The training loss is a measure of the predictivity of the model with respect to the
training data. Training loss is often defined as the mean squared error:

L (θ) =
∑
i

(yi − ŷi)
2 (3.2)

Another common alternative is the logistic loss:

L (θ) =
∑
i

[
yi log

(
1 + e−ŷi

)
+ (1− yi) log

(
1 + eŷi

)]
(3.3)

Regularization term

The regularization term is a tool to control the model complexity and helps to
avoid overfitting. The best way to understand it is by looking at Fig. 3.1.

Figure 3.1: Bias-variance tradeoff

The starting data are shown in the top-left graph. The top right plot shows
an overtraining, meaning that L is very low, but at the expense of a very high
Ω. The bottom left plot shows the opposite situation: Ω is low since only one

3.2. DECISION TREE ENSEMBLES 25

split point is used, but the wrong point position results in a high L. Both these
situations are not desirable: the first one requires too much computational power,
and the model might become poorly predictive on a different dataset; in contrast,
the second one gives inaccurate results. The optimal situation is shown in the red
plot, representing the ideal balance between Ω and L, resulting in a minimization
of the Objective Function. In other words, the model needs to be both simple
and predictive, with a balance which is referred to as “bias-variance tradeoff.” Of
course, this situation is overly simple and is only intended to illustrate the idea. In
general, reaching the right equilibrium is not so easy, and it is why Decision Tree
algorithms are used.

3.2 Decision tree ensembles

A decision tree ensemble consists of a set of Classification And Regression Trees
(cart’s) [11]. A very simple example of a cart is represented in Fig. 3.2.

Figure 3.2: A simple cart example

In the example, to find whether a family member will like a computer game,
only age is considered: if the age is less than 20 the cart will return a prediction
score of 2, returning −1 otherwise. It is clear that a single cart typically results
in a weak classifier, particularly inadequate for complex models. A simple way to
advance the very primitive model of Fig. 3.2 consists in adding a second cart,
as shown in Fig. 3.3. In this case, another variable is taken into consideration:
daily computer usage. This tree returns ±0.9, depending on whether a member of
the family uses a computer daily or not. The total prediction score of the cart

ensemble is then computed by simply adding together each person’s scores.

26 CHAPTER 3. BOOSTED DECISION TREES

Figure 3.3: A less simple cart example

In a more mathematically precise form:

ŷi =
K∑
k=1

fk (xi) , fk ∈ F (3.4)

where K is the number of trees, f is a function in the functional space F , and F
is the set of all possible cart’s.

3.3 Tree boosting

Tree boosting conceptually happens in a simple way: defining an Objective Func-
tion and then optimizing it [11]. Let the Objective Function be in the form:

Obj =
n∑

i=1

l
(
yi, ŷ

(t)
i

)
+

t∑
i=1

Ω (fi) (3.5)

where n is the number of events in the training sample and t is the number of trees
in the ensemble.

3.3.1 Additive training

Ideally, one would like to learn the trees structures, which means the functions
fi, each containing the structure of a tree and the leaf scores. This is, however,
much harder than a traditional gradient-based optimization problem. The strategy

3.3. TREE BOOSTING 27

which is commonly used is an additive one: adding one tree at a time, keeping fixed
what has already been learned. If ŷ(t)i is the prediction value at step t, then:

ŷ
(0)
i = 0

ŷ
(1)
i = f1 (xi) = ŷ

(0)
i + f1 (xi)

ŷ
(2)
i = f1 (xi) + f2 (xi) = ŷ

(1)
i + f2 (xi)

. . .

ŷ
(t)
i =

t∑
k=1

fk (xi) = ŷ
(t−1)
i + ft (xi)

(3.6)

The last thing that remains to be decided is which tree to add at each step.
The most natural choice appears to be to add the one which optimizes Obj:

Obj(t) =
n∑

i=1

l
(
yi, ŷ

(t)
i

)
+

t∑
i=1

Ω (fi)

=
n∑

i=1

l
(
yi, ŷ

(t−1)
i + ft (xi)

)
+ Ω(ft) + constant

(3.7)

Using for example the mean squared error as the loss function [see Equation
(3.2)], Obj becomes:

Obj(t) =
n∑

i=1

(
yi −

(
ŷ
(t−1)
i + ft (xi)

))2

+
t∑

i=1

Ω (fi)

=
n∑

i=1

[
2
(
ŷ
(t−1)
i − yi

)
ft (xi) + ft (xi)

2
]
+ Ω(ft) + constant

(3.8)

In general, since not all losses are as friendly as the mean squared error, it is
useful to take the Taylor expansion of the loss function up to the second order:

Obj(t) =
n∑

i=1

[(
yi, ŷ

(t−1)
i

)
+ gift (xi) +

1

2
hif

2
t (xi)

]
+ Ω(ft) + constant (3.9)

where gi = ∂
ŷ
(t−1)
i

l
(
yi, ŷ

(t−1)
i

)
and hi = ∂2

ŷ
(t−1)
i

l
(
yi, ŷ

(t−1)
i

)
After having removed all the constants, the Objective Function at step t be-

comes:

Obj
(t)
net =

n∑
i=1

[
gift (xi) +

1

2
hif

2
t (xi)

]
+ Ω(ft) (3.10)

28 CHAPTER 3. BOOSTED DECISION TREES

3.3.2 Model complexity and tree structure score

Until now the regularization term Ω has only been naively explained, and it is time
to introduce a more accurate description. Before doing so, the definition of a tree
f(x) must be better formalized:

ft(x) = wq(x), w ∈ RT , q : Rd → {1, 2, . . . , T} (3.11)

where w is the vector of scores, q is a function which assigns each data element to
the corresponding leaf, and T is the number of leaves. Complexity can be defined
in uncountable ways, here a simple definition will be used only as a demonstration:

Ω(f) = γT +
1

2
λ

T∑
j=1

w2
j (3.12)

where γ and λ are additional parameters of the model (hyperparameters).

The Objective Function can then be reformulated as:

Obj(t) ≈
n∑

i=1

[
giwq(xi) +

1

2
hiw

2
q(xi)

]
+ γT +

1

2
λ

T∑
j=1

w2
j

=
T∑

j=1

⎡⎣⎛⎝∑
i∈Ij

gi

⎞⎠wj +
1

2

⎛⎝∑
i∈Ij

hi + λ

⎞⎠w2
j

⎤⎦+ γT

(3.13)

where Ij = {i|q (xi) = j} is the set of indices of data assigned to the jth leaf. It
can be useful to define Gj =

∑
i∈Ij gi and Hj =

∑
i∈Ij hi, so that the Objective

Function becomes:

Obj(t) =
T∑

j=1

[
Gjwj +

1

2
(Hj + λ)w2

j

]
+ γT (3.14)

It is easy to see that the optimal values for wj and Obj are:

w∗
j = − Gj

Hj + λ
(3.15)

Obj∗ = −1

2

T∑
j=1

G2
j

Hj + λ
+ γT (3.16)

An example of how the process works can be seen in Fig. 3.4: the scores are
obtained in a way similar to those of Fig. 3.3, but they now take into account the
complexity of the model.

3.3. TREE BOOSTING 29

Figure 3.4: An example of score calculation

3.3.3 Learning the tree structure

After having found a way to measure the “goodness” of a tree, the ideal procedure
would be to enumerate all possible trees and pick the best one. In practice, the
algorithm tries to split each leaf into two leaves and calculates the score gain as:

Gain =
1

2

[
G2

L

HL + λ
+

G2
R

HR + λ
− (GL +GR)

2

HL +HR + λ

]
− γ (3.17)

where L and R stay for left and right leaf: for example, the first term in the
parenthesis represents the left leaf’s score, and the second term is the score of the
right leaf. The gain equation shows that the new branch should be added if the
gain is larger than γ. This kind of technique is known as “pruning.” In the simple
situation shown in Fig. 3.5, a left to right scan can be used to calculate the scores
of all possible splits and decide which position optimizes the problem. This kind
of strategy, albeit simple, works pretty well in most of the cases.

Figure 3.5: Research of optimal split

30 CHAPTER 3. BOOSTED DECISION TREES

3.4 Lightgbm

Lightgbm is a gradient boosting framework which uses tree based algorithms [12].
It aims to offer the following advantages with respect to other competitors such as
XGBoost or tmva:

• Faster training speed and higher efficiency

• Lower memory usage

• Better accuracy

• Support of parallel and gpu learning

• Capability of handling large-scale data

3.4.1 Optimization in speed and memory usage

Contrary to the simple procedure presented in Section 3.3, Lightgbm does not
implement pre-sort-based algorithms, as they are not easy to optimize. On the
contrary, it uses histogram-based algorithms in order to speed up training and
reduce memory usage. Advantages of this kind of algorithms include:

• Reduced cost of calculating the gain for each split

– Pre-sort-based algorithms have time complexity O (ndata)

– Histogram computation also has a time complexity O (ndata), but this
involves only a fast sumup operation; after the histogram construction
the algorithm has a time complexity O (nbins), with nbins ≪ ndata

• Usage of histogram subtraction for further speedup

– To get the histograms of one leaf in a binary tree, the histogram sub-
traction of its parent and its neighbor is used

– There is the need to construct the histogram for only one leaf (the one
with smaller ndata); the histogram of the neighbor can then be obtained
by histogram subtraction with a small cost of O (nbins)

• Reduced memory usage

– Continuous values are replaced with discrete bins; if nbins is small, a
small data type can be used

3.4. LIGHTGBM 31

– There is no need to store additional information for pre-sorting feature
values

• Reduced communication cost for parallel learning

3.4.2 Optimization in accuracy

Leaf-wise tree growth

The majority of tree learning algorithms add leaves by level, as shown in Fig. 3.6.
On the contrary, Lightgbm uses leaf-wise (also known as best-first) tree growth, as
shown in Fig. 3.7. This strategy consists in choosing the leaf with the maximum
delta loss to grow: by keeping the number of leaves fixed, algorithms of this kind
tend to result in lower loss than level-wise ones. Since leaf-wise may result in
overfitting if ndata is too small, Lightgbm includes a parameter max_depth to limit
the tree growth in depth.

Figure 3.6: Level-wise tree growth

Figure 3.7: Leaf-wise tree growth

Optimal split for categorical features

Categorical features are usually represented with one-hot1 encoding. However,
for high-cardinality categorical features, a one-hot tree needs to grow very deep,

1A one-hot is a group of bits among which a single bit is high, and all the others are low.

32 CHAPTER 3. BOOSTED DECISION TREES

therefore being suboptimal. A good solution can be partitioning the categories
into two subsets: for a feature with k categories, the number of possible partitions
is 2k−1 − 1. Then the idea is, at each split, to sort the categories based on the
training objective. In particular, Lightgbm sorts the histogram according to its
accumulated values and then finds the best split on the sorted histogram.

3.4.3 Applications and metrics

Lightgbm can be applied in a number of ways:

• Regression

• Binary classification

• Multi classification

• Cross-entropy

• Lambdarank

It also support various metrics:

• L1 loss

• L2 loss

• Log loss

• Classification error rate

• Auc

• Ndcg

• Map

• Multi-class log loss

• Multi-class error rate

• Fair

• Huber

• Poisson

• Quantile

3.4. LIGHTGBM 33

• Mape

• Kullback-Leibler

• Gamma

• Tweedie

3.4.4 Hyperparameters

Some tuning parameters need to be defined to control the learning: they are known
as “hyperparameters,” to contrast them with the other parameters derived via
training. Lightgbm’s hyperparameters include the following:

• objective: the application chosen, such as regression or binary classification

• metric: the metric to be evaluated on the evaluation set

• boosting: the kind of boosting used, such as Gradient Boosting Decision
Tree or Random Forest

• num_leaves: the maximum number of leaves in one tree

• feature_fraction: the fraction of features which Lightgbm will select on
each iteration

• bagging_fraction: the fraction of data which Lightgbm will select on each
iteration

• min_data_in_leaf: the minimum number of data in each leaf

34 CHAPTER 3. BOOSTED DECISION TREES

Part II

ANALYSIS AND RESULTS

35

Chapter 4

Jet variables

The study presented here on the classification of pileup and hard-scattering jets is
performed using events of Higgs Bosons produced in vector boson fusion process
and decaying into four neutrinos, as shown in Fig. 4.1.

Figure 4.1: Feynman diagram representing the decay of a Higgs boson into four
neutrinos

These events are simulated using a Geant4 [13] simulation of the interaction
of jets with the detectors, including the simulation of the hgtd detector. The
events have been simulated in the hl-lhc conditions overlaying up to 200 pileup
interactions. Jets from the hard scattering are considered signal, while jets from
secondary interactions are considered background.

A typical classification study always begins by comparing the signal and back-
ground features.

37

38 CHAPTER 4. JET VARIABLES

4.1 Jet variable distributions

Three kinds of plots will be shown for each variable (where possible): its distribu-
tion, a two-dimensional distribution of the variable and of jet pT (or η), and a plot
of the variable average as a function of the transverse momentum, with error bars
showing standard deviation.

4.1.1 jet_pt

The first variable to be considered is jet_pt (Fig. 4.2). This variable represents
the jet’s transverse momentum, which is the component of the jet momentum
projected on the transverse plane. As shown in Fig. 4.2, on average, signal jets
tend to have higher jet_pt, since much of the pileup comes from soft collisions.

4.1.2 jet_eta

The next variable is jet_eta (Figs. 4.3 to 4.5), which describes the pseudorapidity
of the jet. All the plots show the absolute value of the variable. The first thing
worth noting in Fig. 4.3 is that the signal tends to be more concentrated at low
jet_eta values, as expected from the hard-scattering process kinematics. What
can be noted, especially from Fig. 4.5, is that the average transverse momentum
for signal tends to decrease as jet_eta increases, corresponding to smaller angles.
On the contrary, it is approximately constant for background jets.

4.1.3 jet_phi

The jet_phi variable (Figs. 4.6 to 4.8) is simply the azimuthal angle of the jet in
spherical coordinates. Indeed, its distribution is expected to be uniform between
φ = −π and φ = π; moreover, it should not depend on the value of jet_pt.
Both these expectations are confirmed by Fig. 4.6 and 4.7. An important thing
to notice, for Fig. 4.8 and for all the other average plots, is that background jets
cover a smaller jet_pt range compared to signal ones, since the jet_pt spectrum
is much softer for these jets.

4.1.4 jet_Rpt

As already mentioned in Section 1.6.2, jet_Rpt (Figs. 4.9 to 4.11) is defined as:

RpT =

∑
ptrkT (PV0)

pjetT

(4.1)

4.1. JET VARIABLE DISTRIBUTIONS 39

Since it is designed to distinguish signal and background jets efficiently, its
distributions should be very different for the two data groups. This is shown in
Fig. 4.9: while the signal distribution is quite flat with a maximum at around
RpT = 0.5, the background data are very strongly peaked at RpT = 0. This is also
visible in Fig. 4.10, where the bottom background plot is almost white outside of
the bottom bin. In Fig. 4.11 the averages of jet_Rpt are shown in function of
jet_pt and what can be seen is that the jet_Rpt does not depend on jet_pt.

4.1.5 jet_t0comp

The jet_t0comp variable (Figs. 4.12 to 4.14) is defined as:

tcomp
0 =

∑
i pT,i

√
σ2
lead+σ2

i

|tlead−ti|∑
i pT,i

(4.2)

where ti are the timing information for each track i of the event, tlead is the timing
information of the leading (highest pT) track, and σi and σlead are the corresponding
uncertainties. This variable is expected to have a good discriminating power, since
it compares the leading track time with a sort of t0 (the primary collision time): if
the difference is small, which means a high jet_t0comp value, it is probable that
the jet comes from the hard-scatter collision.

4.1.6 jet_sign

jet_sign (Figs. 4.15 to 4.17) is another time-related variable, defined as:

Sign =
|tlead − tsublead|√
σ2
lead + σ2

sublead

(4.3)

where tlead and tsublead are the timing information of the leading (highest pT) and
subleading (second highest pT) tracks, and σlead and σsublead are the corresponding
uncertainties. This variable is expected be a good discriminating feature, since it
basically measures the difference between the times of the leading and the sub-
leading tracks: if these times are very different, it is probable that the tracks come
from different (secondary) vertices.

4.1.7 jet_NtrkTime

The last variable which has been studied is jet_NtrkTime (Figs. 4.18 to 4.20),
which represents the number of tracks with timing information in the jet. It appears

40 CHAPTER 4. JET VARIABLES

clear from Fig. 4.18 that the distributions for signal and background are extremely
different. Moreover, as shown in Fig. 4.20, there seems to be a quasi-linear correla-
tion between jet_NtrkTime and jet_pt, meaning that excluding jet_pt from the
training variables might potentially result in some loss in discrimination power.

Figure 4.2: Distributions of jet_pt for signal and background

4.1. JET VARIABLE DISTRIBUTIONS 41

Figure 4.3: One-dimensional distributions of jet_eta for signal and background

Figure 4.4: Two-dimensional distributions of jet_eta for signal and background

42 CHAPTER 4. JET VARIABLES

Figure 4.5: jet_pt as a function of jet_eta for signal and background. On the y
axis, the jet_pt averages for each jet_eta bin are shown, with error bars repre-
senting standard deviation.

Figure 4.6: One-dimensional distributions of jet_phi for signal and background

4.1. JET VARIABLE DISTRIBUTIONS 43

Figure 4.7: Two-dimensional distributions of jet_phi for signal and background

Figure 4.8: jet_phi as a function of jet_pt for signal and background. On the y
axis, the jet_phi averages for each jet_pt bin are shown, with error bars repre-
senting standard deviation.

44 CHAPTER 4. JET VARIABLES

Figure 4.9: One-dimensional distributions of jet_Rpt for signal and background

Figure 4.10: Two-dimensional distributions of jet_Rpt for signal and background

4.1. JET VARIABLE DISTRIBUTIONS 45

Figure 4.11: jet_Rpt as a function of jet_pt for signal and background. On
the y axis, the jet_Rpt averages for each jet_pt bin are shown, with error bars
representing standard deviation.

Figure 4.12: One-dimensional distributions of jet_t0comp for signal and back-
ground

46 CHAPTER 4. JET VARIABLES

Figure 4.13: Two-dimensional distributions of jet_t0comp for signal and back-
ground

Figure 4.14: jet_t0comp as a function of jet_pt for signal and background. On
the y axis, the jet_t0comp averages for each jet_pt bin are shown, with error
bars representing standard deviation.

4.1. JET VARIABLE DISTRIBUTIONS 47

Figure 4.15: One-dimensional distributions of jet_sign for signal and background

Figure 4.16: Two-dimensional distributions of jet_sign for signal and background

48 CHAPTER 4. JET VARIABLES

Figure 4.17: jet_sign as a function of jet_pt for signal and background. On
the y axis, the jet_sign averages for each jet_pt bin are shown, with error bars
representing standard deviation.

Figure 4.18: One-dimensional distributions of jet_NtrkTime for signal and back-
ground

4.1. JET VARIABLE DISTRIBUTIONS 49

Figure 4.19: Two-dimensional distributions of jet_NtrkTime for signal and back-
ground

Figure 4.20: jet_NtrkTime as a function of jet_pt for signal and background. On
the y axis, the jet_NtrkTime averages for each jet_pt bin are shown, with error
bars representing standard deviation.

50 CHAPTER 4. JET VARIABLES

4.2 Bdt training

A first classification using the bdt implementation of Lightgbm was performed
with different combinations of jet_Rpt, jet_t0comp, jet_sign, and jet_NtrkTime.
jet_pt and jet_eta were not included because they strongly depend on the phys-
ical process in question, therefore their usage might result in some generality loss
for the algorithm.

First of all, all the graphs shown are repeated for two pT ranges of the jets,
30–50GeV and 50–80GeV, since the separation power of the variables vary for
different pT ranges. Out of the 90 695 jets for the low pT range (35 759 signal
and 54 936 background) and the 51 732 jets for the high pT range (43 488 signal
and 8244 background), a random 50% was used for training the algorithm and
the other 50% for testing. The hyperparameters cited in Section 3.4.4 were also
optimized using the optuna package [14], as shown in Section A.2.1.

As discussed in Chapter 3, the training is performed optimizing the Objective
Function. The loss part of the Objective Function is represented in Fig. 4.21 as a
function of the number of iterations. Since it is used mainly to check the algorithm’s
correct functioning, only one representative plot will be shown; all the others are
qualitatively identical. When the training does not encounter any improvement on
the test set for 100 rounds, as shown in Fig. 4.21, the algorithm stops and records
the current results.

In Figs. 4.22 and 4.23 the relative importance of all the features is shown in
terms of the number of times a feature is used in a tree split. Even though this
graph is created for each of the variable combinations, only the one with all the
variables used is shown, as it is the most significant to understand the importance
of the features.

As expected, jet_Rpt is the most important one, with jet_t0comp, jet_sign,
and jet_NtrkTime progressively less useful: therefore, adding jet_t0comp to the
situation where only jet_Rpt is used will likely have more impact than adding
jet_NtrkTime to the case where the other three features are already considered.

Fig. 4.24 shows a one-dimensional histogram of the predictions distributions:
again, only one graph is shown as an example, as the other ones are qualitatively
similar.

4.2.1 Roc curves

A Receiver Operating Characteristic (roc) curve is a way to represent the diag-
nostic ability of a binary classifier graphically by plotting each data point with an

4.2. BDT TRAINING 51

x value corresponding to the false positive rate and a y value corresponding to the
true positive rate. These points are obtained by imposing a selection on the bdt

output and then integrating the distributions for signal and background from the
value to the right and left ends. In other words, if the classification is perfect, the
graph will be perfectly vertical going from 0 to 1 on the y axis and then perfectly
horizontal going from 0 to 1 on the x axis; on the other hand, if the classification
is completely random the graph will go up and right diagonally. An example of a
generic roc curve is shown in Fig. 4.25. For the current work, though, the true
positive rate is represented on the x axis, corresponding to the efficiency for signal
jets, and the reciprocal values of the false positive rates are shown on the y axis,
corresponding to the rejection of background jets (Fig. 4.26).

To conclude, the Area Under the Curve (auc) values are shown in Table 4.1:
it is clear from the definition of the roc curve that a perfect graph will have an
auc value of 1, therefore this parameter is a good indicator of the quality of the
bdt. As expected, the values for the high pT range are higher.

Features pT < 50GeV pT > 50GeV

Rpt 0.972 0.983
Rpt+t0comp 0.974 0.984
Rpt+t0comp+sign 0.974 0.984
Rpt+t0comp+sign+NtrkTime 0.974 0.984

Table 4.1: The auc values for trainings using jet variables

Figure 4.21: The loss part of the Objective Function as function of the number of
iterations

52 CHAPTER 4. JET VARIABLES

Figure 4.22: Number of splits associated with each feature for the low pT range

Figure 4.23: Number of splits associated with each feature for the high pT range

4.2. BDT TRAINING 53

Figure 4.24: One of the prediction distributions (low pT range)

Figure 4.25: An example of a generic roc curve

54 CHAPTER 4. JET VARIABLES

Figure 4.26: The roc curves for trainings using jet variables

Chapter 5

Track variables

After having checked the classification performance using high-level jet variables,
the potential of individual track information usage is explored. Of course, not all
jets have the same number of tracks when the data are recorded. Usually, a pre-
liminary filter, checking if some standard conditions regarding the space variables
are fulfilled, is used, resulting in a decrease in most of the jets’ track number.

5.1 Track variable distributions

5.1.1 Ntrks

The distributions of the number of tracks for signal and background jets are shown
in Fig. 5.1: as expected, signal jets tend to have a higher number of tracks per jet.
For each jet, the tracks are first ordered according to pT , then for each track a set
of features is recorded. Since showing all the distributions would be redundant,
only the distributions for each jet’s first track will be shown.

5.1.2 trk_pt

This variable represents the transverse momentum of the track. As expected, the
distribution of trk_pt is very different between signal and background, following
the different jet_pt spectrums shown in Fig. 4.2.

Since the trk_pt distribution might depend on the physical process chosen, it
will not be used as such in the bdt training, but as a normalized trk_pt_norm

(Fig. 5.3), defined as:

pnormT =
ptrackT

pjetT

(5.1)

55

56 CHAPTER 5. TRACK VARIABLES

5.1.3 trk_eta

The trk_eta is the pseudorapidity of the tracks. Again, the absolute values are
shown in Fig. 5.4. Qualitatively, the distribution of trk_eta is similar to that of
jet_eta.

5.1.4 trk_phi

Being trk_phi the azimuthal angle of the track, it is expected to be uniformly
distributed, as confirmed in Fig. 5.5.

5.1.5 trk_d0

The trk_d0 variable (Fig. 5.6) represents the transverse impact parameter, which
is the projection of the impact parameter on the transverse plane. As one may
expect, the signal tracks, being on average more energetic, have a narrower distri-
bution than the softer background tracks.

5.1.6 trk_z0

The trk_z0 variable (Fig. 5.7) represents the longitudinal impact parameter, which
is the projection of the impact parameter on the longitudinal direction. Contrary to
trk_d0, this variable is distributed slightly more narrowly for background tracks.

5.1.7 trk_time

The last variable analyzed for each track is trk_time, which provides information
about the time at which each track is detected. The values in Fig. 5.8 do not
represent the absolute time values, but rather the differences between the time of
the track and the t0 of the event. The t0 is an event variable that represents the
time when the collision of interest takes place: in order to obtain it, a different
bdt is run, and the event time is computed.

As one might expect, the signal jets tend to have a trk_time closer to 0 (which
means an absolute time closer to t0) compared to background jets, since a signifi-
cant amount of background jets do not originate from the primary collision vertex
but from secondary collisions, which usually happen at a different t0.

5.1. TRACK VARIABLE DISTRIBUTIONS 57

Figure 5.1: Distributions of Ntrks for signal and background

Figure 5.2: Distributions of trk_pt for signal and background

58 CHAPTER 5. TRACK VARIABLES

Figure 5.3: Distributions of trk_pt_norm for signal and background

Figure 5.4: Distributions of trk_eta for signal and background

5.1. TRACK VARIABLE DISTRIBUTIONS 59

Figure 5.5: Distributions of trk_phi for signal and background

Figure 5.6: Distributions of trk_d0 for signal and background

60 CHAPTER 5. TRACK VARIABLES

Figure 5.7: Distributions of trk_z0 for signal and background

Figure 5.8: trk_time

5.2. BDT TRAINING 61

5.2 Bdt training

After having explored the bdt training using only high-level variables and hav-
ing studied the performance of the configurations with Rpt, t0comp, sign and
NtrkTime, the next step consists in exploring the potential of using low-level track
variables directly in the training. As a first default configuration, trk_pt_norm,
trk_phi, trk_d0, and trk_z0 are used.

5.2.1 Effect of trk_eta

The first thing that one wants to check is the impact of trk_eta on the bdt

performance. It is crucial to evaluate the importance of trk_eta because it is a
cinematic variable whose distributions for signal and background might depend
on the physical process chosen. Therefore, if the bdt relies too heavily on it, it
means that its application to other physical processes may result in suboptimal
performance.

Two different setups will be used: the first one includes the variables trk_pt_norm,
trk_phi, trk_d0, and trk_z0; the second one uses the same ones adding trk_eta

as well. For both configurations, the first ten tracks will be taken into considera-
tion.

As shown in Fig. 5.9 and in Table 5.1, even though trk_eta actually helps in
training an efficient bdt, its impact is not particularly big. Therefore, considering
the potential bias that using trk_eta would introduce, it is safe to assume that it
is better not to include it while training the bdt.

Features pT < 50GeV pT > 50GeV

Without trk_eta 0.976 0.986
With trk_eta 0.976 0.986

Table 5.1: The auc values for trainings using low-level variables, with and without
using trk_eta

5.2.2 Effect of the number of tracks

After having decided which variables to use, the optimal number of tracks has been
investigated. By looking at Fig. 5.1, it can be noted that most of the jets have at
least five tracks, but only a few arrive at ten. Therefore, it may seem reasonable
to cut some of the tracks in order to simplify the algorithm. The bdt is therefore
tested using the information from a maximum of five or ten tracks per jet.

62 CHAPTER 5. TRACK VARIABLES

It is clear from Fig. 5.10 and from Table 5.2 that using five or ten tracks does
not make much difference, as one may expect by looking at the Ntrks variable
distribution. In order to make the algorithm lighter, only the first five tracks will
then be used.

Features pT < 50GeV pT > 50GeV

5 tracks 0.976 0.986
10 tracks 0.976 0.986

Table 5.2: The auc values for trainings using low-level variables, with five and ten
tracks

5.2.3 Timing information

The final step consists in adding track-level timing information (trk_time) to the
optimal track configuration found in the previous sections.

As shown in Fig. 5.11, the addition of timing information actually improves the
bdt performance, as expected. This improvement is shown in Table 5.3 as well.

Features pT < 50GeV pT > 50GeV

Without trk_time 0.976 0.986
With trk_time 0.977 0.987

Table 5.3: The auc values for trainings using low-level variables, with and without
timing information

5.2. BDT TRAINING 63

Figure 5.9: The roc curves for trainings with and without using trk_eta

64 CHAPTER 5. TRACK VARIABLES

Figure 5.10: The roc curves for trainings with five and ten tracks

5.2. BDT TRAINING 65

Figure 5.11: The roc curves for trainings with and without timing information

66 CHAPTER 5. TRACK VARIABLES

Chapter 6

Conclusion

This thesis’s aims were mainly two: studying if using track information in the bdt

training may improve its performance compared to the case when only high-level
variables are used and exploring the impact of the usage of timing information
deriving from the hgtd detector.

In order to answer to these questions, Fig. 6.1 and Table 6.1 are studied: the
results for the best case with high-level variables only (jet_Rpt, t0comp, jet_sign,
and NtrkTime) are compared with the ones obtained in the best case with track
variables (trk_pt_norm, trk_phi, trk_d0, and trk_z0), the last configuration
both with and without using trk_time.

Features pT < 50GeV pT > 50GeV

Rpt+t0comp+sign+NtrkTime 0.974 0.984
Tracks without trk_time 0.976 0.986
Tracks with trk_time 0.977 0.987

Table 6.1: The auc values for trainings with all the notable variable combinations

The first comparison is the one between the case with only high-level variables
and the one with track variables without timing information. It is clear from Fig.
6.1 that for both low and high pT ranges the improvement in bdt performance is
remarkable. This result is not trivial, since the jet configuration already includes
three variables with timing information (t0comp, sign, and NtrkTime), which are
all unavailable in the track case. On the other hand, though, Rpt is defined as a
function of the normalized trk_pt’s: therefore, it can be internally reconstructed
by the bdt. The presence of extra track variables, unavailable at jet level, probably
explains the further improvement over the best high-level variable configuration.

As expected, when trk_time is used as well, the performance is further im-

67

68 CHAPTER 6. CONCLUSION

proved. This is clear from Fig. 6.1 as well as from Table 6.1. For example, in both
pT ranges, for a fixed 0.8 hard-scatter jet efficiency the pileup jet rejection improve-
ment is around 30%, while for a fixed 100 pileup jet rejection the hard-scatter jet
efficiency improvement is around 5%. This result is particularly valuable since it
is produced using only five tracks per jet and ignoring pseudorapidity completely,
making the outcome of this thesis probably valid even for different physical pro-
cesses. Therefore, it really seems that the usage of timing information from hgtd

can improve the suppression of jets from pileup in high-luminosity conditions, es-
pecially if low-level track information is exploited.

Figure 6.1: The roc curves for trainings with all the notable variable combinations

Appendix A

The code

In this appendix, the main parts of the various chapters’ codes will be shown and
briefly explained.

A.1 Variables

First of all, various packages need to be introduced:

1 import numpy as np
2 import pandas as pd
3 from matp lo t l i b import pyplot as p l t
4 import uproot

The first one is the numpy package, which provides an N-dimensional array object
with sophisticated functions: in the present code numpy is used for a variety of
purposes, such as the creation of 2D-histograms or linear spaces. The second
package is pandas, which provides fast, flexible, and expressive data structures:
it is used as the main container for the jet data. The next one is pyplot, from
the matplotlib package, a comprehensive library for creating static, animated,
and interactive visualizations: it is used to plot the data graphs. The last one is
uproot, a package to interact with root1 files: contrary to the standard root

implementation, this package is a mere input/output library, which is all that is
needed in the present code.

Then, the data need to be imported and briefly processed:

1 f = uproot .open("FILE . root ")
2 tree_s = f . get ("myTreeS")
3 tree_b = f . get ("myTreeB")

1Root is an open-source data analysis framework, used by high energy physics, in particular
in the atlas experiment.

69

70 APPENDIX A. THE CODE

4 tree_s = tree_s . pd . df ()
5 tree_b = tree_b . pd . df ()
6
7 def normalize_input_df (t r e e) :
8 for var_name in "EventNumber" , "Nfwdjet " , "Ncenjet " :
9 t r e e [var_name] = t r e e [var_name] . astype (int)

10 mask_nojet = np . i snan (t r e e [" jet_pt "])
11 df = t r e e [~mask_nojet]
12 return df
13
14 df_s = normalize_input_df (tree_s)
15 df_b = normalize_input_df (tree_b)
16
17 df_s = df_s . a s s i gn (i s_s i gna l=True)
18 df_b = df_b . a s s i gn (i s_s i gna l=False)
19 df = pd . concat ([df_s , df_b]) . reset_index () . drop ([" subentry "

, " entry "] , ax i s=1) . sor t_va lues (["EventNumber" , " jet_pt "
])

At line 1 the root file is imported through uproot, then at lines 2–5 the two data
trees (respectively the signal and the background ones) are extracted from the
file and converted to pandas’s dataframes. After that, the normalize_input_df

function is defined and then applied to both trees: this function first converts the
variables "EventNumber", "Nfwdjet", "Ncenjet" to int data, then filters all those
jets without the "jet_pt" variable, whose meaning has been explained in Section
5.1.2. In lines 17 and 18 a new "is_signal" variable is assigned to each entry of
both trees, set to True for signal jets and to False for background ones. The last
line concatenates both trees, creating a new dataframe with all the data.

A.1.1 One-dimensional histogram

The first graph is a one-dimensional histogram. In this plot, the variable to analyze
is represented on the x axis, with the distribution density shown on the y axis:

1 f i g , ax = p l t . subp lo t s (f i g s i z e =(6.4 , 4 . 8) , dpi=100 ,
t ight_layout=True)

2 min_v , max_v = df ["VARIABLE"] . quan t i l e ([0 . 0 1 , 0 . 9 9])
3 b ins = np . l i n s p a c e (min_v , max_v, 100)
4 ax . h i s t (df [df [" i s_s i gna l "]==True] ["VARIABLE"] , b ins=bins ,

dens i ty=True , alpha =0.5 , l a b e l=" s i g n a l ")

A.1. VARIABLES 71

5 ax . h i s t (df [df [" i s_s i gna l "]==False] ["VARIABLE"] , b ins=bins ,
dens i ty=True , alpha =0.5 , l a b e l="background")

6 ax . s e t_x labe l ("VARIABLE")
7 ax . l egend ()

The first thing to do is create a figure fig and a graph ax with the plt.subplots
function: the figsize argument provides width and height in inches, dpi is the
resolution of the figure in dots per inch, and tight_layout automatically adjusts
subplot parameters so that it fits into the figure area. The purpose of the second
and third line is to create a linear space for binning on the x axis: first, a minimum
and a maximum value are computed by trimming the ends of the variable distribu-
tion to exclude outliers, then the interval is divided into 100 equally spaced bins2.
Lines 4 and 5 are the same code, one for the signal and one for the background.
The function ax.hist creates a one-dimensional histogram, using the data filtered
by "is_signal" value and the bins provided at line 3. The role of density=True is
to normalize the histogram, alpha increases plot transparency, and label is used
in the legend.

A.1.2 Two-dimensional histogram

The second graph is a two-dimensional histogram. In this plot, the variable to
analyze is represented on the x axis, "jet_pt" is shown on the y axis, and the
darkness of each square represents the distribution density:

1 f i g , axx = p l t . subp lo t s (nrows=2, f i g s i z e =(6.4 , 7 . 2) , dpi
=100 , t ight_layout=True)

2
3 for num in [0 , 1] :
4 x=df [df [" i s_s i gna l "]==num] ["VARIABLE"]
5 y=df [df [" i s_s i gna l "]==num] [" jet_pt "]
6 my_range = [x . quan t i l e ([0 . 0 1 , 0 . 9 9]) , y . quan t i l e ([0 . 0 1 ,

0 . 9 9])]
7 H, xedges , yedges = np . histogram2d (x , y , b ins=25, range

=my_range)
8 H = np . rot90 (H)
9 H = np . f l i p ud (H)

10 for i , _ in enumerate (H.T) :
11 for j , _ in enumerate (H.T[i]) :

2Various bin numbers were tried, but 100 appears to be the optimal value. The number of
bins was changed only to deal with discrete variables, where trimming was also avoided.

72 APPENDIX A. THE CODE

12 H.T[i] [j] /= H.T[i] . sum()
13 Hmasked = np .ma. masked_where (H==0, H)
14 axx [num−1] . pcolormesh (xedges , yedges , Hmasked)
15
16 axx [0] . s e t_ t i t l e (" s i g n a l ")
17 axx [0] . s e t_x labe l ("VARIABLE")
18 axx [0] . s e t_y labe l (" jet_pt ␣ (GeV) ")
19 axx [1] . s e t_ t i t l e ("background")
20 axx [1] . s e t_x labe l ("VARIABLE")
21 axx [1] . s e t_y labe l (" jet_pt ␣ (GeV) ")

Line 1 is the same as the one for the one-dimensional histogram, with the addition
of nrows. This argument specifies the existence of two separate plots, one for the
signal and one for the background3. The for loop is repeated in order to create
the two plots. In lines 4 and 5 the dataframes for x and y axes are filled, filtering
according to the is_signal value corresponding to num. In line 6, a list of two
ranges is created, a range for the x axis and one for the y axis: this range is then
used in line 7 to create the histogram object. The histogram H is then rotated and
flipped in lines 8 and 9 to allow the proper plotting orientation. In lines from 10
to 12 each column of the histogram is normalized before creating a masked version
of the histogram to render the empty bins accurately. The graph is then plotted
in line 14, and the titles of axes are added.

A.1.3 Average plot

The third graph is an xy plot, with the variable to analyze represented on the y
axis and "jet_pt" on the x axis. Error bars representing standard deviations of
the distributions are also shown for each point:

1 f i g , ax = p l t . subp lo t s (f i g s i z e =(6.4 , 4 . 8) , dpi=100 ,
t ight_layout=True)

2 l a b e l s =[" s i g n a l " , "background"]
3
4 for num in [0 , 1] :
5 df1 = df [df [" i s_s i gna l "]==num]
6 df1 = df1 [(df1 [VARIABLE]<df1 ["VARIABLE"] . quan t i l e (0 . 9 9)

)]

3In this case, it is not wise to graph both the signal and the background on the same graph
since it can become difficult to read because of color superimposition

A.1. VARIABLES 73

7 df1 = df1 [(df1 [VARIABLE]>df1 ["VARIABLE"] . quan t i l e (0 . 0 1)
)]

8 x = df1 [df1 [" i s_s i gna l "]==num] [" jet_pt "]
9 y = df1 [df1 [" i s_s i gna l "]==num] ["VARIABLE"]

10 x l s = x . va lue s . t o l i s t ()
11 y l s = y . va lue s . t o l i s t ()
12 b ins = np . l i n s p a c e (x . quan t i l e (0) , x . quan t i l e (1) , 25)
13 xmeans=[]
14 for i in range (len (b ins)−1) :
15 xmeans . append ((b ins [i +1]+bins [i]) /2)
16 means=[]
17 e r r o r s =[]
18 for i in range (len (b ins)−1) :
19 temp=[]
20 for j in range (len (x l s)) :
21 i f x l s [j]>=bins [i] and x l s [j]<bins [i +1] :
22 temp . append (y l s [j])
23 means . append (np .mean(temp))
24 e r r o r s . append (np . std (temp))
25 ax . e r r o rba r (xmeans , means , xe r r =0, ye r r=e r ro r s , marker=

" . " , l a b e l=l a b e l s [num−1])
26
27 ax . s e t_x labe l (" jet_pt ␣ (GeV) ")
28 ax . s e t_y labe l ("VARIABLE")
29 ax . l egend ()

Line 1 is the usual subplots function. Line 2 is a list of two labels that will be
used for the plots. The first three lines of the for loop select only the data with
the appropriate "is_signal" value and then trim the tails of the distribution to
exclude outliers. Lines 8 and 9 then create two dataframes for the x ad y axes
respectively, before converting them to a list of float values in lines 10 and 11.
Line 12 creates a linear space for binning on the x axis. Lines from 13 to 15 create
a list of the middle points of all the bins created earlier to allow proper plotting.
Lines 16 to 24 create two other lists, one (means) for the average values on the
y axis for each bin and one (errors) for standard deviations of each mean value.
These values are then plotted using the ax.errorbar function, which takes two
lists as inputs and has additional arguments for both x and y error bars, the marker
shape, and the labels. As usual, the axes are labeled and a legend is created.

74 APPENDIX A. THE CODE

A.2 Bdt training

As usual, the first things to look at are the included packages:

1 import numpy as np
2 import pandas as pd
3 from matp lo t l i b import pyplot as p l t
4 import uproot
5 import l ightgbm as lgb
6 import optuna . i n t e g r a t i o n . l ightgbm as opt
7 from s k l e a rn . met r i c s import roc_curve
8 from s k l e a rn . met r i c s import roc_auc_score
9 from s k l e a rn . mode l_se lect ion import t r a i n_te s t_sp l i t

The first four lines are the same as those reported in Section A.1. Line 5 imports
the lightgbm package, which is the one which actively performs the bdt training.
Line 6 imports the optuna package, an automatic hyperparameter optimization
software framework, which will be discussed soon. The last three lines import
some functions from sklearn, a package created to deal with machine learning
problems: these functions will be explained when encountered.

After this, the data need to be imported, in the same way shown in Section
A.1. Once the data are imported, two steps need to be performed: first, the
hyperparameters need to be tuned, and then the bdt training is performed.

A.2.1 Hyperparameters optimization

The following code will be shown for just one variable choice, but of course it needs
to be repeated for all the combinations required.

1 params = {
2 " ob j e c t i v e " : " binary " ,
3 "metr ic " : " b ina ry_log lo s s " ,
4 }
5 df_train , d f_test = t r a i n_te s t_sp l i t (df , t e s t_s i z e =0.5)
6 train_x = df_tra in [FEATURE] . va lue s
7 train_y = df_tra in [" i s_s i gna l "] . va lue s
8 test_x = df_test [FEATURE] . va lue s
9 test_y = df_test [" i s_s i gna l "] . va lue s

10 dt ra in = lgb . Dataset (train_x , l a b e l=train_y)
11 d t e s t = lgb . Dataset (test_x , l a b e l=test_y)

A.2. BDT TRAINING 75

12 model = opt . t r a i n (params , dtra in , va l i d_se t s =[dtra in , d t e s t
] , num_boost_round=1000 , early_stopping_rounds=100)

13 best_params = model . params

In lines 1 to 4, the essential parameters of the bdt are defined, as they depend
on data nature and desired result. The "binary" objective refers to the binary
classification (signal or background), while the "binary_logloss" metric is the
default way to evaluate efficiency for "binary" classifications; the other parame-
ters will be optimised by the optuna package. At line 5, the train_test_split

function is used: this function randomly splits the df variable into two dataframes,
one for the training of the bdt and one for testing it: the default splitting sizes
are 75% of data for the training dataframe and the rest for the testing. Still, after
various tests, the best splitting size appears to be 50% for both sets. In lines 6 to
9, the dataframe data are split into an x and a y: x represents the features used,
which means the data which will be given to the bdt to discriminate signal and
background jets, while y corresponds to the true values, that is whether each jet
is signal or background. Lines 10 and 11 create two Lightgbm datasets using the
lists created above. Line 12 is the line where the actual optimization takes place:
opt.train takes as input the parameters defined at the beginning of the code, the
training dataset dtrain, two valid sets (training and testing) which will be used
to evaluate the optimal parameters, the maximum number of boosting iterations,
and the number of iterations without improvement after which to stop the training.
The last line saves the optimized parameters to a variable best_params.

A.2.2 Training

1 eva l s_r e su l t = {}
2 df_train , d f_test = t r a i n_te s t_sp l i t (df)
3 train_x = df_tra in [FEATURE] . va lue s
4 train_y = df_tra in [" i s_s i gna l "] . va lue s
5 test_x = df_test [FEATURE] . va lue s
6 test_y = df_test [" i s_s i gna l "] . va lue s
7 dt ra in = lgb . Dataset (train_x , l a b e l=train_y)
8 d t e s t = lgb . Dataset (test_x , l a b e l=test_y)
9 model = lgb . t r a i n (best_params , dtra in , va l i d_se t s =[dtra in ,

d t e s t] , e va l s_r e su l t=eva l s_re su l t , early_stopping_rounds
=100)

10 p r ed i c t i on = model . p r ed i c t (test_x , num_iteration=model .
b e s t_ i t e r a t i on)

76 APPENDIX A. THE CODE

Line 1 creates a dictionary which will be used to plot some graphs, which will
be explained in the next sections. Lines 2 to 9 are the same as those used for
hyperparameters optimisation, with the only difference that now model is trained
using the standard lgb.train function instead of the optuna version, using the
best_params previously calculated. Line 10 creates a list of probabilities, which
correspond to the level of confidence with which the algorithm can define each jet
as background or signal: 0 corresponds to a 100% background match, 1 to a 100%

signal match.

A.2.3 Training plots

Three graphs are plotted during the bdt algorithm to represent the evolution of
the training visually.

1 lgb . plot_metr ic (eva l s_re su l t , ax=ax)
2 lgb . plot_importance (model , ax=ax)
3 data = pd . DataFrame ({ " i s_s i gna l " : test_y , " p r ed i c t i o n " :

p r ed i c t i o n })
4 f i g , ax = p l t . subp lo t s (f i g s i z e =(6.4 , 4 . 8) , dpi=100 ,

t ight_layout=True)
5 min_v , max_v = [0 , 1]
6 b ins = np . l i n s p a c e (min_v , max_v, 100)
7 ax . h i s t (data [data [" i s_s i gna l "]==True] [" p r ed i c t i on "] , b ins=

bins , dens i ty=True , alpha =0.5 , l a b e l=" s i g n a l ")
8 ax . h i s t (data [data [" i s_s i gna l "]==False] [" p r ed i c t i on "] , b ins=

bins , dens i ty=True , alpha =0.5 , l a b e l="background")
9 ax . s e t_x labe l (" Score ")

10 ax . s e t_ysca l e (" l og ")
11 ax . l egend ()

The first graph is plotted in line 1: it is a plot of the metric used to evaluate che
training loss in function of the number of iterations. The second one is a graph
which shows the relative importance of each feature in creating the bdt. The
rest of the lines plots the distribution of the bdt predictions, separately for signal
and background jets. After having created a dataframe data, the usual subplots
function is used: the procedure is the same for the one-dimensional histograms in
Section A.1, a linear space is created and the two histograms are plotted. The only
notable difference is at line 11, where the scale of the y axis is set to logarithmic,
in order to better appreciate the distribution.

A.2. BDT TRAINING 77

A.2.4 Roc curves

1 auc = roc_auc_score (test_y , p r ed i c t i on)
2 roc = ([] , [])
3 roc [0] , roc [1] , _ = roc_curve (val_y , p r ed i c t i o n)
4 graph = ([] , [])
5 for elem in roc [1] :
6 graph [0] . append (elem)
7 for elem in roc [0] :
8 graph [1] . append (1/ elem)
9 f i g , ax = p l t . subp lo t s (f i g s i z e =(6 . 4 , 4 . 8) , dpi=100 ,

t ight_layout=True)
10 ax . p l o t (graph [0] , graph [1] , l a b e l=l a b e l)
11 ax . set_xlim ([0 . 7 , 1])
12 ax . set_ylim ([0 , 200])
13 ax . s e t_x labe l (" E f f i c i e n c y ␣ f o r ␣hard−s c a t t e r ␣ j e t s ")
14 ax . s e t_y labe l (" Re j ec t i on ␣ o f ␣ p i l e−up␣ j e t s ")
15 ax . l egend ()

The first thing that is done is the calculation of the Area Under the Curve auc.
After this, a tuple of lists, representing the x and y coordinates of the points,
is created at lines 2 and 3 using the roc_curve function. The plots provided by
atlas are different though, as they show the true positive rate on the x axis and on
the y axis the reciprocal of the false positive rate. Therefore, in order to compare
the plots to the atlas ones, a new tuple of lists graph is created in lines from 4
to 8, with the proper variables in the x and y axes. After this, the plot is created
as usual.

78 APPENDIX A. THE CODE

Bibliography

1Luminosity? why don’t we just say collision rate?, CERN, (2020) https://home.
cern/news/opinion/cern/luminosity-why-dont-we-just-say-collision-

rate (visited on 09/30/2020).
2F. Gianotti, Collider physics: LHC, (2000) http://cds.cern.ch/record/

458489/files/p219.pdf (visited on 09/30/2020).
3The Large Hadron Collider, CERN, (2020) https://home.cern/science/

accelerators/large-hadron-collider (visited on 09/30/2020).
4About the ATLAS experiment, CERN, (2020) https://atlas.cern/discover/
about (visited on 09/30/2020).

5Detector & technology, CERN, (2020) http://atlas.cern/discover/detector
(visited on 09/30/2020).

6S. Manzoni, Physics with photons with the ATLAS Run 2 data: calibration and
identification, measurement of the Higgs boson mass and search for supersymme-
try in di-photon final state (Università degli studi di Milano, Milano, 2017).

7G. Apollinari, O. Brüning, T. Nakamoto, and L. Rossi, High Luminosity Large
Hadron Collider HL-LHC, https://arxiv.org/pdf/1705.08830.pdf%5C%7D
(visited on 09/30/2020).

8The ATLAS Collaboration, Technical design report: a High-Granularity Timing
Detector for the ATLAS phase-II upgrade, (2020) http://cds.cern.ch/record/
2719855/files/ATLAS-TDR-031.pdf (visited on 09/30/2020).

9S. Schramm, ATLAS jet reconstruction, calibration, and tagging of Lorentz-boosted
objects, (2017) http://cds.cern.ch/record/2291608/files/ATL-PHYS-PROC-
2017-236.pdf?version=1 (visited on 09/30/2020).

10M. Cacciari, G. P. Salam, and G. Soyez, FastJet user manual, http://fastjet.
fr/repo/fastjet-doc-2.4.5.pdf (visited on 09/30/2020).

11Introduction to boosted trees, xgboost, (2020) https://xgboost.readthedocs.
io/en/latest/tutorials/model.html (visited on 09/30/2020).

79

https://home.cern/news/opinion/cern/luminosity-why-dont-we-just-say-collision-rate
https://home.cern/news/opinion/cern/luminosity-why-dont-we-just-say-collision-rate
https://home.cern/news/opinion/cern/luminosity-why-dont-we-just-say-collision-rate
http://cds.cern.ch/record/458489/files/p219.pdf
http://cds.cern.ch/record/458489/files/p219.pdf
https://home.cern/science/accelerators/large-hadron-collider
https://home.cern/science/accelerators/large-hadron-collider
https://atlas.cern/discover/about
https://atlas.cern/discover/about
http://atlas.cern/discover/detector
https://arxiv.org/pdf/1705.08830.pdf%5C%7D
http://cds.cern.ch/record/2719855/files/ATLAS-TDR-031.pdf
http://cds.cern.ch/record/2719855/files/ATLAS-TDR-031.pdf
http://cds.cern.ch/record/2291608/files/ATL-PHYS-PROC-2017-236.pdf?version=1
http://cds.cern.ch/record/2291608/files/ATL-PHYS-PROC-2017-236.pdf?version=1
http://fastjet.fr/repo/fastjet-doc-2.4.5.pdf
http://fastjet.fr/repo/fastjet-doc-2.4.5.pdf
https://xgboost.readthedocs.io/en/latest/tutorials/model.html
https://xgboost.readthedocs.io/en/latest/tutorials/model.html

80 BIBLIOGRAPHY

12Features, Microsoft Corporation, (2020) http://lightgbm.readthedocs.io/

en/latest/Features.html (visited on 09/30/2020).
13Overview, https://geant4.web.cern.ch (visited on 09/30/2020).
14Optuna - a hyperparameters optimization framework, Preferred Networks, (2020)
https://optuna.org (visited on 09/30/2020).

http://lightgbm.readthedocs.io/en/latest/Features.html
http://lightgbm.readthedocs.io/en/latest/Features.html
https://geant4.web.cern.ch
https://optuna.org

	List of figures
	List of tables
	Foreword
	I THEORETICAL BACKGROUND
	The Large Hadron Collider and the atlas detector
	Luminosity
	Hard and soft collisions
	The Large Hadron Collider
	Atlas
	The atlas frame of reference
	The Inner Detector
	The Calorimeter
	The Muon Spectrometer
	The Magnet System

	High Luminosity lhc
	Physics motivations of hl-lhc

	The High Granularity Timing Detector
	The detector
	Suppression of pileup jets

	Object reconstruction
	Jet reconstruction
	Jet inputs
	Jet algorithms
	Jet grooming

	Jet calibration

	Boosted Decision Trees
	Supervised learning
	Models and parameters
	The Objective Function

	Decision tree ensembles
	Tree boosting
	Additive training
	Model complexity and tree structure score
	Learning the tree structure

	Lightgbm
	Optimization in speed and memory usage
	Optimization in accuracy
	Applications and metrics
	Hyperparameters

	II ANALYSIS AND RESULTS
	Jet variables
	Jet variable distributions
	jet_pt
	jet_eta
	jet_phi
	jet_Rpt
	jet_t0comp
	jet_sign
	jet_NtrkTime

	Bdt training
	Roc curves

	Track variables
	Track variable distributions
	Ntrks
	trk_pt
	trk_eta
	trk_phi
	trk_d0
	trk_z0
	trk_time

	Bdt training
	Effect of trk_eta
	Effect of the number of tracks
	Timing information

	Conclusion
	The code
	Variables
	One-dimensional histogram
	Two-dimensional histogram
	Average plot

	Bdt training
	Hyperparameters optimization
	Training
	Training plots
	Roc curves

	Bibliography

